

 T1

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Exploring Computer Science — E-Textiles Technical Guide

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

 T2

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Exploring Computer Science — E-Textiles Technical Guide

This guide is a companion resource to the curriculum unit and professional development
workshops for the electronic textiles activities in Exploring Computer Science
(www.exploringcs.org). Tomoko Nakajima, Janell Amely, Deborah Fields, and John Landa
developed this guide together with Yasmin Kafai, Joanna Goode, Gail Chapman, John Ottina,
Pamela Amaya, and Jane Margolis as part of a National Science Foundation grant (1027736).

Copyright © 2018 Exploring Computer Science

This work is licensed under a Creative Commons Attribution – Non-Commercial 4.0
International License: http://creativecommons.org/licenses/by-nc/4.0/. You may:

• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material. The licensor cannot revoke

these freedoms as long as you follow the license terms:
• Attribution — You must give appropriate credit to Exploring Computer Science, provide

a link to the license, and indicate if changes were made. You may do so in any
reasonable manner, but not in any way that suggests that Exploring Computer Science
endorses you or your use.

• Non-Commercial — You may not use the material for commercial purposes.
• No additional restrictions — You may not apply legal terms or technological

measures that legally restrict others from doing anything the license permits.

Please cite this work as:

Fields, D. A., Nakajima, T., Amely, J., Fields, D., Landa, J., Amaya, P., & Ottina, J. (2018). Stitching
the Loop: A Resource Guide for using Electronic Textiles in Exploring Computer Science. Exploring
Computer Science. Available at http://exploringcs.org.

http://www.exploringcs.org/
http://creativecommons.org/licenses/by-nc/4.0/
http://exploringcs.org/

 T3

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Exploring Computer Science — E-Textiles Technical Guide

Table of Contents

OVERVIEW __ T4

Examples of Electronic Textiles __ T5

Ethical and Safety Issues __ T7

BASICS: CIRCUITS, CRAFTING, CODING ___________________________________ T9

Circuitry __ T9

Sewing __ T18

Coding __ T26

TROUBLESHOOTING __ T29

Connecting the Circuit Playground to the Computer _______________________ T29

Electrical Problems ___ T34

Code Problems – Compile Errors _____________________________________ T40

Code Problems – Logical Errors ______________________________________ T46

MATERIALS __ T51

Electronic textile materials and tools __________________________________ T51

Crafting materials and tools __ T52

IDEAS & INSPIRATION __ T53

Do-It-Yourself Sensors ___ T54

Electronic Textiles Design Ideas ______________________________________ T57

GLOSSARY ___ T68

BIBLIOGRAPHY ___ T76

T4

Exploring Computer Science — E-Textiles Technical Guide: OVERVIEW

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

OVERVIEW
This resource guide provides teachers with information about concepts, common issues, and
instructions to help students learn to sew, design circuits, and write computer programs to make
their own electronic textiles, and gives more background information, explanations and step-by-
step instructions than are included in the ECS e-textiles curriculum lesson plans.

Electronic textiles (shorter: E-textiles) are wearables embedded with microcontrollers, sensors, and
lights. Designers of e-textiles use materials like conductive thread, conductive fabric, and flexible
circuit boards. E-textiles are used in many different contexts from education to sports, fashion,
military and medicine. Examples of e-textiles include astronaut space suits, wearable medical devices,
haute couture fashions, entertainers’ costumes, and athletic-wear.

1 Basics: This section includes the topics circuits, crafting and coding.

2 Troubleshooting: You will make a few mistakes as you make electronic textiles—everyone does! In
this section we describe various common errors that come up when crafting and programming
electronic textiles, identify possible sources, and then suggest strategies on how to fix them.

3 Materials: This section includes descriptions and images of many of the materials used in electronic
textile projects.

4 Ideas & Inspiration: Sometimes coming up with a cool project idea is the hardest part! Before you
get started, look through photos and videos of example projects made by other people. This section
also includes instructions on how to make your own sensors.

5 Glossary: This section contains definitions for many terms you will encounter in the curriculum or
this manual.

T5

Exploring Computer Science — E-Textiles Technical Guide: OVERVIEW

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Examples of Electronic Textiles

Turn Signal Jacket by Leah
Buechley: Switches on the
right and left sleeves of the
jacket control the LEDs,
activates the “turn signals”
when pressed.

Know-It-All-Knitting-Bag by Kalani Craig: LEDs are
positioned on the bag to reflect traditional knitting charts,
and the display blink patterns indicate the knitting pattern
used to create the bag.

The Music Jacket by
Maggie Orth, Emily Cooper,
Rehmi Post: Jacket
incorporates an
embroidered keypad, mini
MIDI synthesizer, speakers,
and custom music
software.

T6

Exploring Computer Science — E-Textiles Technical Guide: OVERVIEW

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Kit of No Parts by
Hannah Perner-Wilson &
Leah Buechley: DIY
textile-based sensors
can be made with
accessible materials, and
used to create e-textiles
projects conductive
thread.

The Climate Dress by
Diffus Design: Light
patterns on the dress
change based on CO2
levels in the air.
Microcontrollers and
CO2 sensors are
connected through
complex embroidery
with conductive thread.

T7

Exploring Computer Science — E-Textiles Technical Guide: OVERVIEW

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Ethical and Safety Issues
E-textiles merge arts and crafts with electronics and computers. The use of technology comes
with some ethical imperatives. The Association for Computing Machinery1 published this list of
important and agreed-upon general ethic principles for working with computers:

• Contribute to society and to human well-being, acknowledging that all people are
stakeholders in computing.

• Avoid harm.

• Be honest and trustworthy.

• Be fair and take action not to discriminate.

• Respect the work required to produce new ideas, inventions, creative works, and
computing artifacts.

• Respect privacy.

• Honor confidentiality.

Adding “power” through circuitry to do-it-yourself projects presents its own challenges and
responsibilities. One issue is the proper storage and disposal of our electronic materials.

Batteries: Coin cell batteries should be stored so that they’re not touching one another to
prevent short circuits. Lithium primary batteries provide extremely high currents and can
discharge very rapidly when short-circuited, resulting in overheating, rupture, and even
explosion. This is why some lithium-based batteries shipped in high quantities can sometimes
qualify as a Class 9 hazardous material. Try to store batteries separate from projects, to lock the
batteries away after use, and to recycle “dead” batteries at appropriate recycling centers (some
do not accept lithium primary batteries). Some stores that only sell batteries will take the used
coin cell batteries to recycle. Regulations for disposal of batteries vary widely; local governments
may have additional requirements over those of national regulations. Do not dispose of them
in the trash! Heavy equipment at landfills can easily crush battery cases and exposed lithium
can cause slow-burning landfill fires and react violently to water. 2

Sharp objects: Many schools and school districts, including LAUSD, have zero tolerance policies
for possession of sharp objects on campus. This ban might include sewing needles, seam rippers,
fabric scissors, Xacto knives, etc. that are regularly used in e-textiles classrooms. Be sure to obtain

1 Association for Computing Machinery. (2018). ACM Code of Ethics and Professional Conduct.
 Retrieved from ethics.acm.org.
2 Buchmann, I. (2016). Learn about batteries. Battery University. Retrieved from
http://batteryuniversity.com/learn/article/primary_batteries.

http://ethics.acm.org/
http://batteryuniversity.com/learn/article/primary_batteries

T8

Exploring Computer Science — E-Textiles Technical Guide: OVERVIEW

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

proper authorization for use of these items on school grounds before providing them to
students. This might include obtaining assent and consent from students and their guardians,
and also keeping the site administrators aware, too. Make sure the items are stored in locked
areas when not in use and that first aid kits are nearby for accidental nicks and cuts. Think about
starting a “check-out” program to keep track of all sharp objects during work time, and also make
sure that at the end of that time, all sharp items are returned.

Glues: Though not hazardous through general classroom use, crafters’ glues and solvents have
been used by drug abusers (“glue sniffing”) as highly dangerous intoxicative inhalants.3 Check
http://bit.ly/gluesafety to be aware of potential hazardous ingredients before sharing them with
students.

3 Medical Online. (2013). Glue sniffing. IRG. Retrieved from
www.medicalonline.com.au/medical/drugs/glue_sniffing.htm.

http://bit.ly/gluesafety
http://www.medicalonline.com.au/medical/drugs/glue_sniffing.htm

 T9

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

BASICS: CIRCUITS, CRAFTING, CODING
This section includes tips for beginning crafters, images that illustrate difficult to explain
concepts, and a list of common pitfalls to avoid.

Circuitry
Before we dive into making electronic textile projects, we have to understand how the electronic
elements are powered. In order for something to be electronic, it must have a functioning circuit with
some basic components: A power source, a conductor, and a load. 4

1. Electricity
Batteries and power outlets provide electricity, and each power supply has a certain number of volts
that it provides. A volt is a measurement of the electrical potential produced by the battery, or the
utility grid that delivers electricity to the outlet in our walls. This voltage is available for our use, but in
order for the electricity to power anything, the energy has to be able to move. The electricity has to
follow a path (circuit) to create a current.

2. Current
Every source of electricity has two sides, and we need a voltage difference in order to get electricity to
flow. Electricity flows from an area of higher voltage to an area with lower voltage. If we create a circuit
between something with higher voltage and something with lower voltage, the current will flow
between them. This is why batteries have two different metal ends and outlets have at least two holes.
In batteries and other DC (direct current) voltage sources, these sides (terminals) are either positive
(+), or negative (-). The positive terminal has a higher voltage than the negative side. When we
measure voltage, we usually say that the negative is 0 volts, and the positive terminal is represented
by however many volts it supplies. A confusing fact: Current flows from positive to negative, but the
electrons flow from negative to positive. This circular path, or circuit, starts and ends at the power
source, and is always required to get electricity to flow.

3. Conductors
Electrical energy can only flow through materials that can conduct electricity, such as metal and certain
kinds of liquids. When we give electricity a path to follow from the positive to the negative terminal of
the power source, the energy will move through this conductor. If a conductor does not make a solid
connection from the positive to the negative, the electricity has nowhere to go and will not move.

4 Grusin, M. (n.d.). What is a circuit? Sparkfun Electronics. Retrieved from
https://learn.sparkfun.com/tutorials/what-is-a-circuit.

https://learn.sparkfun.com/tutorials/what-is-a-circuit

 T10

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Current is LAZY. We have to give it somewhere to go and something to do, or it won’t be motivated to
do anything.

4. Loads
We build circuits to make electricity function, to do useful things for us. We do this by connecting items
(components) between the positive and negative terminals. By creating a circuit, powered with the
appropriate voltage of electrical current, the electricity can make light, make noise, sense light or dark,
These components are called loads, because they “load down” the power supply, just like a person is
“loaded down” when carrying something. If we connect the positive side of a voltage source to a load,
like a Light Emitting Diode (LED) that requires electricity to function, then connect that load to the
negative side of the voltage source, that LED should turn light up.

Example of a simple circuit

See the difference between Figure 1 and Figure 2? In Figure 1, the LED is dark (doesn’t turn on) because
the conductor on its right side is not connected to the negative side of the power source. Remember
that the negative end of a power source is sometimes indicated as 0 volts because the voltage is “used
up” when it flows through the load, and because the electrons leave from the negative terminal and

Figure 1: Incomplete circuit

Figure 2: Complete circuit
Images from www.sparkfun.com, CC BY-NC-SA 3.0.

WARNING: When connecting the positive to the negative side of a power supply,
without giving it a load, it creates a short circuit. This will drain the battery. In rare
occasions, batteries might even explode, though it’s more likely that the area of the
short circuit will get hot and possibly burn the textile material or you. Find more
information about short circuits in the Electrical Problems section.

WARNING: Human bodies are also conductive, as we will learn in the e-textiles
Human Sensor Project. This is why we are told not to stick metal forks into
outlets or use electrically powered appliances near water. For the most part, the
projects in this unit are very low powered – only 3.3-5 volts – and will not shock
anyone. Still, caution is always warranted.

http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T11

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

travel to the positive terminal. Here is another way to diagram this complete simple circuit (how to
draw a circuit diagram is explained later in this Technical Guide):

Image from www.mycircuits9.com.

5. Resistors
It is possible to load down a circuit too little—so that too much energy is flowing through our
components. This will eventually burn out our components or even the power supply. Resistors are
components, which have a specific, never-changing electrical resistance that limits the flow of
electrons through a circuit. They are passive, meaning they only consume power and can’t generate
it. Resistors are added to circuits where the current is too strong for the load. This electrical resistance
is measured in ohms. In Figure 4, a resistor is necessary because a AA battery produces too much
energy for one LED to consume. The resistor is limiting the amount of energy that the LED has access
to, so that it does not burn out quickly.

In electronic textiles, the materials we use are carefully designed and ideal for the voltage necessary
for our projects. It is possible to complete all of the activities in the curriculum with one-cell batteries
and without using resistors. If we were to use stronger batteries, conductors that have less resistance
than conductive thread (like steel wires), or if we were to plug the project into a wall outlet, we would
need to measure the voltage and add the correct resistors.

6. Switches (open and closed circuits)
A switch can be placed in a circuit to shut off or turn on different functions by controlling the current.
It is a critical component in any electronic system that requires user interaction or control. Accidentally
letting too much current flow through part of our circuit (because the load is too light) can cause a
fire. Most power supplies have a safety mechanism built into them to break the circuit if it detects too
much current. A circuit breaker is a kind of a switch that opens the circuit to stop electricity flow. This

Figure 3: Simple circuit diagram

Figure 4: Three depictions of a simple circuit with an added resistor
Image from www.sparkfun.com, CC BY-NC-SA 3.0.

http://www.mycircuits9.com/
http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T12

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

is the reason all homes and buildings have circuit breakers to prevent overloaded electrical
components from starting a fire.

A switch can only exist in two states: off or on. When the switch is off, it creates an opening or a gap
in the circuit, preventing the current from flowing. In the on state, a switch acts as a conductor by
closing the circuit. Go to http://bit.ly/falstadcircuit to interact with a circuit that has a switch, or turn
on and off the light switch of the room we are in.

7. Sensors
Like a switch, a sensor also generates input signals. But sensors can “read” (or “sense”) a range of
input conditions, and these readings can be read by the computer and used to set different outputs
depending on the inputs. For instance, a motion sensor or smoke detector produce a particular signal
when motion or smoke are detected. When the conditions change in the sensor’s coverage area, the
system responds according to the pre-programmed parameters (the motion detector light turns on,
or the smoke alarm goes off).

Figure 6: Devices that use sensors—a metal detector, an MRI machine, and safety airbags on a car
Images from www.smokymountainhobbies.net, www.thehindu.com, & www.carsdirect.com.

In this e-textiles unit, we introduce a tactile sensor that captures and records different levels of
physical touch from the user or operator. Many of us interact with tactile sensors every day with our
touchscreen electronic devices, computer mouse, or laptop scroll-pad.5 Unlike these high-tech
machines, our touch sensor is made with simple household items: aluminum foil, adhesive, and an
iron. Most of the other sensors we use are already installed on the Circuit Playground. However, if you

5 Techopedia. (2016). Touch sensor. Techopedia, Inc. Retrieved from
www.techopedia.com/definition/30234/touch-sensor.

Figure 5: Different switches used in electronic textiles
Images from www.sparkfun.com, CC BY-NC-SA 3.0.

http://bit.ly/falstadcircuit
http://www.smokymountainhobbies.net/
http://www.thehindu.com/
http://www.carsdirect.com/
http://www.techopedia.com/definition/30234/touch-sensor
http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T13

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

used a different microcontroller, you may need to purchase additional sensors and switches. Below
are examples of LilyPad sensors that may be purchased online for use in e-textiles projects.

Figure 7: From left to right, Lily Pad light sensor, temperature sensor, and motion sensor (accelerometer)

Images from www.patsyweartech.wordpress.com.

8. Other Output (buzzers, .mp3 Speakers, etc.)
Like in the Lego Mindstorm kits, there are a variety of components other than LEDs that can be sewn
into our projects. Output components like mp3 speakers may be purchased from Sparkfun, Adafruit
or other sellers to be programed by a Circuit Playground microcontroller. The Circuit Playground also
comes with a buzzer (produced pitched sounds).

9. Drawing Circuit Diagrams

Figure 8: A circuit diagram with a two-cell power source, an LED, a resistor, and a switch. When the switch is closed,

current flows and the LED illuminates. Otherwise the current flow is impeded, and the LED receives no power.
Image from www.sparkfun.com, CC BY-NC-SA 3.0.

Circuit diagrams are very helpful in guiding us as we juggle different components and materials. Like
“blueprints” for builders, electricians, auto technicians, hardware designers, and electrical engineers, in
e-textiles circuit diagrams are commonly used to communicate plans. To learn some of the basic
schematics (symbols) of circuitry, watch this 6-minute YouTube video: http://bit.ly/simple-how-to. Also,
visit this page at Sparkfun for an index of common electronic schematics: http://bit.ly/sparkfunschematic.

Every project in our e-textiles curriculum requires a circuit diagram, meaning that we should make a
plan before creating anything. Some of the diagrams use different conventions, but each diagram
should have some depiction of the following elements:

• Power source
• Loads (LEDs, buzzers, motors, resistors, etc.)
• Connector lines (circuit traces, including sewn conductive thread)

http://www.patsyweartech.wordpress.com/
http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://bit.ly/simple-how-to
http://bit.ly/sparkfunschematic

 T14

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

• Positive and negative charges clearly marked at every connection
• Any switches or sensors that are also incorporated

As long as we clearly mark these elements so that everyone can understand them, we can choose
whichever schematics are the easiest to remember.

NOTE: Marking the positive and negative side for every component in a circuit diagram has been a
lifesaver! It is very easy to place a component backward, as indicated in the Troubleshooting Circuitry
and Crafting Guide. We all have memories of sewing a beautiful project, only to have to rip out stitches
to turn a component around.

10. Power Source
For all of our e-textiles projects, we will use a 3-volt, lithium button battery (CR2032), which has a
positive charge on one side and a negative charge on the other (unmarked) side. This one-cell battery
is commonly drawn in circuit diagrams with two parallel lines (Figure 10). The longer line indicates the
positive charge and the negative charge is demonstrated by the shorter line.

Figure 9: An image of a coin cell battery

Image from www.sparkfun.com, CC BY-NC-SA 3.0

Figure 10: The schematic for a coin cell battery

Image by Tomoko Nakajima.

After the first e-textiles project, we introduce a sewable battery holder. This component has no
charge on its own, but it is designed to hold the cell battery in place. They may have multiple pins
(holes for stitching) that we can sew through with conductive thread so that the battery can power
our circuit. Because of this, we may want to use a modified schematic to visualize where to connect
the positive and negative of our circuit.

WARNING: Putting all the small components (batteries, needles, LEDs) into a bag
together will cause short circuits and at best will only drain the battery. Keep batteries
separate from other components so they do not accidently create a circuit in a pocket
or backpack. A neat trick is to tape them individually onto a stiff piece of paper or a bag.

http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T15

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Figure 11: Two types of sewable battery holders

Images from www.sparkfun.com, CC BY-NC-SA 3.0 &
www.kitronik.co.uk.

NOTE: In later e-textile projects that use Circuit Playgrounds, the microcomputer comes with a
rechargeable power source. This battery does carry both positive and negative charges (as evidenced
by the red and black-cased wires) but it is not necessary to indicate this battery in our circuit diagrams,
since it plugs directly into the Circuit Playground (Figure 14).

In general, we will be only using light-emitting diodes (LEDs) as loads for our projects, and we will
primarily be using the following two LED options, which are both sewable (Figure 15 and Figure 16).
In schematics, lights can be drawn different ways (Figure 17 and Figure 18). Choose the one that is
preferred and use it consistently.

Figure 13: LiPo battery
Image from www.sparkfun.com,

CC BY-NC-SA 3.0

Figure 14: A LilyPad microcomputer
(similar to a Circuit Playground) with
the rechargeable battery plugged in

Image from www.flickr.com: Rain Rabbit.

Figure 15: The LilyPad LED
Image from www.sparkfun.com, CC BY-NC-SA 3.0.

Figure 16: Wired LED
Image from www.conrad.com.

+

- + -
Figure 17: Traditional schematic for an LED

Image from www.kitronik.co.uk.
Figure 18: Modified schematic for e-textiles

Image from www.sciencefriday.com.

Figure 12: The modified schematic of a battery holder
Image by Tomoko Nakajima.

http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.kitronik.co.uk/
http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.flickr.com/
http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.conrad.com/
http://www.kitronik.co.uk
http://www.sciencefriday.com/wp-content/uploads/2014/07/How-a-Circuit-Works.jpg
http://www.kitronik.co.uk/
http://www.sciencefriday.com/

 T16

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

11. Connectors (interchangeable with Conductors, Lines, or Traces)
The connectors or the lines of our circuit can be drawn with solid lines, with positive lines in red and
negative lines in black. These are the same colors used in electrical wiring. Alternatively, we may also
simply indicate the charges clearly with (+) and (-) symbols (Figure 19).

12. Switches
Switches in a circuit are drawn very simply as a diagonal line. It represents an opening in the circuit,
which can be closed when the user wants the circuit to function. Switches can be placed on a negative
or a positive line, as they do not require a particular polarity.

Figure 19: e-textiles circuit diagram with modified schematics
Image by Tomoko Nakajima.

Figure 20: Photo of the actual project
Image from www.kitronik.co.uk.

Figure 21: e-textiles circuit diagram with a
switch and modified schematics

Image by Tomoko Nakajima.

Figure 22: Photo of the actual project
Image from www.gazetteunion.com.

http://www.kitronik.co.uk/
http://www.gazetteunion.com/

 T17

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

13. Sensors
Sensors do not have a set schematic or symbol, as they vary greatly in shape, size, and function. The
most important thing is to label the sensor accurately. Like switches, sensors are also not negative or
positive, though the sensor must be connected to something that will program the sensor and read
the range of input received from the sensor (like an analog pin on the Circuit Playground).

Figure 23: Now we're really getting the hang of it! Can we understand this diagram for a motion detector?
Images from www.learningaboutelectronics.com.

http://www.learningaboutelectronics.com/

 T18

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Sewing
Whenever we are making things by hand, make sure that our workspace is clear of liquids or
sharp objects, anything that might damage the work. Also keep hands clean and avoid handling
food or drinks while crafting, because some components contain lead or nickel. It is a good idea
to wash our hands when we are done, as well.

1. Conductive thread
Conductive thread is thicker than standard sewing thread. It also has a fuzzy texture that frays and
tangles easily (Figure 24).6 This YouTube video explains the properties of conductive thread:
http://bit.ly/cond-thread.

Figure 24: Close-up photos of conductive thread

Images from www.solderingsunday.com & www.etextilelounge.com.
Preparing conductive thread for hand-sewing

Step 1: Cut a piece of conductive thread, about two feet
long. When the thread is too long, it might get tangled as
we sew. If it’s too short, we will have to tie off and re-
thread more often.

Step 2: Pass the cut thread through the beeswax twice to
smooth down the strands (Figure 25).

Step 3: Pinch the end of the thread flat and push it
through the eye of the needle. Then pull the loose end
through from the other side.

NOTE: If the thread is fraying as we sew, use more wax, water, or saliva to smooth it out.

NOTE: There are different sizes of needles. Thicker needles like the tapestry needles that we provide
are easier to thread but do not move through tightly woven fabric as smoothly. The needles that are

6 Peppler, K., Gresalfi, M., Tekinbas, K. S., Santo, R., & Buechley, L. (2014). Soft circuits: Crafting e-fashion with DIY
electronics. (pp. 61-62). Cambridge, MA: MIT Press.

Figure 25: Conductive thread and beeswax
Image from www.instructables.com:

Lynne Bruning.

http://bit.ly/cond-thread
http://www.solderingsunday.com/
http://www.etextilelounge.com/
http://www.instructables.com/

 T19

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

sharper tend to have smaller eyes that are more difficult to thread. See this YouTube tutorial for
choosing special needles for our projects: http://bit.ly/chooseneedle.

2. Make a starting knot (single thread)
After the needle has been threaded, tie a standard knot for hand sewing on one end of the thread.7
Here are step-by-step instructions, photos, and a quick YouTube video: http://bit.ly/sewingknot.

Making a starting knot:

Figure 26: Making a starting knot
Images from www.mcnett.com.

Step 1. Pull one end
of the thread so that
it’s longer

Step 2. Wrap
the thread
around the tip
of the index
finger twice

Step 3. Use
the thumb to
pinch the X
where the
thread loops
cross

Step 4. Roll the
loops a few times,
and then slip the
twisted thread off
the finger. The
loop should look a
little messy. Don’t
worry!

Step 5. Pinch the
tangled loop and pull
the thread to tighten.
The loop should pull
together into a knot.
This might take some
practice!

Figure 27: Our single-threaded needle is now ready for sewing!

Image from www.tamarembroideries.co.uk.

7 McNett. (2011). How to thread a needle. McNett. Retrieved from www.mcnett.com/gearaid/blog/how-to-thread-a-
needle.

http://bit.ly/chooseneedle
http://bit.ly/sewingknot
http://www.mcnett.com/
http://www.tamarembroideries.co.uk/
http://www.mcnett.com/gearaid/blog/how-to-thread-a-needle
http://www.mcnett.com/gearaid/blog/how-to-thread-a-needle

 T20

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Figure 28: Doubling or tripling this simple knot is also an option

Image from www.styleengineers.org.

3. Conductive Sewing
Woven fabric usually has a natural front and a back, like our clothes have an inside and an outside.
View this YouTube video if we’re unsure about which is the front or back side of the fabric we are
using: http://bit.ly/fabricsides. This should be a strong consideration when we modify wearable
material with electronics.8

Prepping to sew:

Step 1. Consult the circuit
diagram to lay out all of the
components. Use a pencil to
sketch out directly onto the
fabric, or tape the components
down. Sew through the tape or
remove it later.

Step 2. Before sewing, make
sure the knotted end (the tail)
of the thread is pulled long,
and that there’s enough
length (at least two inches) on
the other end of the thread so
that the unknotted side
doesn’t slip out of the needle.
The thread below is way too
short!

Step 3. Figure out where to
make the first stitch, we
usually start by sewing one of
the components into place. In
order for the knot to appear
in the backside of the fabric,
the needle has to push
through the fabric from the
back.

Step 4. Pass the needle through the component (in this case, a button). Pull through to make sure
the thread is taut, but don’t pull so hard that the knot pulls through the fabric or the thread breaks.

8 Lilypad. (2013). Sewing basics. Lilypad. Retrieved from http://lilypadarduino.org/?page_id=1256.

Figure 29: Step 1. Tape components
into place before sewing

Image from http://blog.usu.edu/:
Craft Technologies 2013.

Figure 30: Step 2. This is too short!
Pull this end out a little before sewing

Image from www.lilypadarduino.org.

Figure 31: Step 3. Make a stitch
without pulling the knot through

the fabric
Image from www.styleengineers.org.

CAUTION: If the knot is too small, it will pull through the fabric and lose our valuable stitches!
Practice the knot above, or tie several knots like the one below, on top of one another (Figure 28).

http://www.styleengineers.org/
http://bit.ly/fabricsides
http://lilypadarduino.org/?page_id=1256
http://blog.usu.edu/
http://www.lilypadarduino.org/
http://www.styleengineers.org/

 T21

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Step 5. Hold on to the fabric and component, they are not secured yet! Make a small stitch, by gently
placing the needlepoint on the other side of the component we’re trying to secure and pull the thread
through to the backside of the fabric. The needle should emerge right next to the knot.

Step 6. Make sure the thread is taut before each time the needle is passed through the fabric. There
shouldn’t be any loops in the thread, and we shouldn’t be pulling the material so much that the
fabric wrinkles or the thread breaks. Check both the front and back of the fabric that there is no
excess thread (Figure 32). Untangle any knots, as loopy threads can cause short circuits (Figure 33).

Figure 32: Check both the front and back of the

fabric for excess thread
Image from www.lilypadarduino.org.

Step 7. Pass the needle through the same spot three times (make three loops). This is to make sure
the conductive thread has a secure electrical connection with the component.

Step 8. After we’ve looped three times, consult the blueprint and figure out where to stitch. This line
needs to connect to something, right?

Felt does not have a front or back distinction because of the way it is manufactured. While that may
make things easier for beginning crafters, this feature may also become a hindrance, because it’s easy
to mix up whether we’re stitching on the front or the back. When the fronts and backs are mixed up,
we may end up sewing circuits to the wrong components or to the wrong polarities from what we
intended in the circuit diagram.

Before making the first stitch, decide which will be the front side of the fabric, and make a mark on
the backside so we don’t forget. LEDs should generally be in the front; we can choose where the
battery and other components will go.

REMEMBER: “Positive to positive, negative to negative.” A common error is to sew through one end of
a component to the other end of the component. That would result in a short circuit.

Figure 33: Don't leave loops of thread like this on
either side of the fabric. Pull the thread taut

Image from www.etextilelounge.com.

Figure 34: Step 7. Examples of components being sewn through three times.
Images from www.adafruit.com, www.bareconductive.com, & www.sparkfun.com, CC BY-NC-SA 3.0.

http://www.lilypadarduino.org/
http://www.etextilelounge.com/
http://www.adafruit.com/
http://www.bareconductive.com/
http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T22

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

4. Running Stitches

Sewing tips:9

Step 1. Put tape down to help sew in straight lines.

Step 2. Use a running stitch to get the needle and
thread to the point that was just marked. That
means the needle will pass through in and out of
the fabric. Notice how this makes a dotted line. Try
to make the stitches even by making sure the
needle follows a straight line to that point, and by
gathering the same amount of fabric each time.
Make small stitches, no larger than a pinkie
fingernail, and pass the needle carefully in and
out, stab “up and down.”

Step 3. Learn how to use both hands when stitching! Use one hand for the needle and hold the
component and/or the fabric in the other hand.

9 DMC. (2014). Embroidery stitch guide. DMC USA. Retrieved from www.dmc-usa.com/Education/Technique-
Overviews/Embroidery/Embroidery-Stitch-Guide.aspx?technique=embroidery.

Figure 36: Step 2. Make evenly spaced stitches.
Image from www.styleengineers.com.

Figure 35: Step 1. Tape can be a guide for
your needle.

Image by Tomoko Nakajima

Figure 37: These stitches are a
little big...

Image from www.kitronik.co.uk.

Figure 38: These stitches are small,
evenly spaced, and appear secure

Image from www.sparkfun.com,
CC BY-NC-SA 3.0.

Figure 39: These stitches are too loose
and are not well secured to the fabric

Image from
www.librarymakerspace.blogspot.com.

CAUTION: We may be tempted to make huge stitches to save time. However,
larger stitches leave more gaps and loopier thread, which may cause short
circuits (see below).

http://www.dmc-usa.com/Education/Technique-Overviews/Embroidery/Embroidery-Stitch-Guide.aspx?technique=embroidery
http://www.dmc-usa.com/Education/Technique-Overviews/Embroidery/Embroidery-Stitch-Guide.aspx?technique=embroidery
http://www.styleengineers.com/
http://www.kitronik.co.uk/
http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.librarymakerspace.blogspot.com/

 T23

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Step 4. While sewing, pull the thread taut on both the front
and back of the fabric. There should not be any bubbles or
wrinkles in the fabric or the thread. To create smooth
uniform stitches, pull each stitch through with the same
amount of tension. If the stitch is too loose the stitch will
appear limp and if the stitch is pulled too tightly the fabric
will pucker and the design will be distorted.

Step 5. Prevent the thread from twisting by turning the needle a slight quarter to half turn with each
stitch. If the thread gets twisted while stitching, drop the threaded needle and let it hang freely until
it “unwinds.”

Step 6: To create a secure electrical connection, remember to loop through the fabric and
component three times.

Step 7: If this line makes another connection, change direction and sew toward the next point on the
blueprint. If not, make an end knot.

NOTE: As we sew, the thread may run out or break. It happens! Cut more thread, wax it, and start
again. We can even tie the new thread into a knot with the old thread and keep going. If the thread
gets tangled, try to gently undo the knot (don’t pull!). If that doesn’t work, cut the knotted part off and
splice the thread with new thread (Figure 41 & Figure 42).

5. Making end knots
Stitch to the place where the thread should be tied off. Decide whether to have the knot be visible on
the front or hidden in the back. Make sure the needle is on the side of the fabric where we want to
make the knot.10 This quick video demonstrates how to tie off the thread: http://bit.ly/tie-off-thread.

10 Kitronik Ltd. (n.d.). Getting started with e-textiles: Finishing off your stitches. Kitronik Ltd. Retrieved from
www.kitronik.co.uk/blog/getting-started-e-textiles-finishing-stitches/.

Figure 40: Step 4. Try not to let
stitches bubble up like this

Image from www.etextilelounge.com.

Figure 41: Use this simple knot to tie the old
thread with the new thread and make a splice

Image from www.en.wikibooks.org:
Adventist Youth Honors Answer Book

Figure 42: An example of spliced thread
Image from www.ebay.com:

handtools-uk

http://bit.ly/tie-off-thread
http://www.kitronik.co.uk/blog/getting-started-e-textiles-finishing-stitches/
http://www.etextilelounge.com/
http://www.en.wikibooks.org/
http://www.ebay.com/
http://www.ebay.com/usr/handtools-uk?_trksid=p2047675.l2559

 T24

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

How to make an end knot:

Step 1: Insert the needle under
the last stitches created (Figure
43). We can also make a light
stitch through a small amount of
the fabric instead.

Figure 43: Make one more stitch
Image from www.kitronik.co.uk.

Step 2: Repeat that light stitch in the same spot, do it three times, pulling the thread taut each time.

Step 3: Cut the thread off close to the knot.

6. Taking out stitches
Oh no! We made a mistake! It happens to everyone. Before scrapping the
entire project, think carefully about the easiest and most effective way to
fix the problem. Sometimes just “taking out” or remove some stitches
would do the trick. We might use a seam ripper to carefully cut the
conductive thread without re-doing the entire circuit (Figure 45). Remove
the bits of cut thread completely from the project to prevent shorts.

Alternatively, we could also use thread snips or other detail scissors for taking up stitches (Figure 46).

Figure 46: Thread snips and scissors
Images from www.nordicneedle.com, www.firemountaingems.com, & www.ebay.com/handtools-uk

7. Storing works in progress
When we take breaks from sewing, we gently secure the
needle in “stand-by” mode by tucking it lightly into the fabric
(Figure 47). Don’t ever let the needle hang loose or the
needle will get lost!

Figure 47: Tuck the needle into the project
before putting it away ortaking a break.

Image from www.makezine.com: Nataliezdrieu.

Figure 44: Cut the leftover thread
Image from www.kitronik.co.uk.

Figure 45: Use a seam
ripper to gently cut parts

of the sewn thread.
Image from

www.sewingloftblog.com.

WARNING: Be careful, the point and the concave dip between the
seam ripper points are very sharp!

http://www.kitronik.co.uk/
http://www.nordicneedle.com/
http://www.firemountaingems.com/
http://www.ebay.com/
http://www.ebay.com/usr/handtools-uk?_trksid=p2047675.l2559
http://www.makezine.com/
http://www.kitronik.co.uk/
http://www.sewingloftblog.com/

 T25

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

8. Finishing touches
Dab some craft glue or nail polish on the knots to secure
them (Figure 48).

Figure 48: Using nail polish to
secure the knot

Image from www.kitronik.co.uk.

CAUTION: Don’t glue over knots until the circuit has been tested and it works. If the
circuit is not functional, those stitches might have to come out later.

CAUTION: Too much glue will make the thread no longer conductive!

CAUTION: Check http://bit.ly/gluesafety for potential hazardous ingredients before
introducing glues into the classroom.

http://www.kitronik.co.uk/
http://bit.ly/gluesafety

 T26

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Coding
Once we get to the programmable Circuit Playground projects, there are three software options
to program the wearable microcomputers we use in e-textiles: ModKit, Arduino, and
Codebender. All of these applications are free, and we only need one! 11

1. Programming software: Modkit
Download Modkit: http://bit.ly/DLmodkit

Modkit Micro™ is a drag & drop programming environment that makes it easy to program electronics.
Because it is block-based rather than text-based, this platform is a convenient transition for students
accustomed to programming in Scratch or the Lego Mindstorms. Modkit also features Code View,
which allows the user to also begin to learn what the commands look like in text form. Unfortunately,
we have experienced some issues with loading this software, and have decided not to encourage its
use in e-textiles classrooms (updated October 2015).12

2. Programming software: Arduino
Download Arduino: http://bit.ly/DLarduino

The open-source Arduino Software (IDE) is written in Java and based on Processing and other open-
source software. This programming language is widely used by people making interactive projects,
because Arduino boards can read inputs (a light on a sensor, a finger on a button, or a Twitter
message) and turn them into outputs (activate a motor, turn on an LED, publish something online).
This environment is commonly used in many areas of computer science and is a great introduction
for students into vast world of computer programming. Unfortunately, for these reasons, it may be
very difficult for people with no programming experience to get used to Arduino. The program may
also require users to troubleshoot by searching for coding “bugs” or mistakes that can be frustrating
for novices and experts alike.13

3. Programming software: Codebender
No need to download! Use the online platform: https://codebender.cc/.

With Codebender, all we need is a browser. It looks just like Arduino (and in fact, it is Arduino). This is
a great choice if the computer does not have hardware space for installing & maintaining software.
Like the online version of Scratch, all our code is stored on the cloud and we can open and modify our
work anywhere with Internet access, as long as each person registers as a user. Use Codebender only

11 LilyPad. (2013). Setup. LilyPad. Retrieved from http://lilypadarduino.org/?page_id=1673.
12 Modkit. (2016). Modkit [website]. Retrieved from www.modkit.com.
13 Arduino. (2016). Arduino [website]. Retrieved from www.arduino.cc.

http://bit.ly/DLmodkit
http://bit.ly/DLarduino
https://codebender.cc/
http://lilypadarduino.org/?page_id=1673
http://www.modkit.com/
http://www.arduino.cc/

 T27

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

if there is fast and reliable online access. Install the plugin so that Codebender can communicate with
the USB ports.14

4. Setting up the Circuit Playground for programming
Regardless of software ultimately chosen, we will need to set up the system to communicate with the
Circuit Playground microcomputer, developed by Adafruit. In this unit we use the Circuit Playground
Classic. Other sewable microcontrollers are available but generally cost more or require more parts.
For instance, you may also use a Sparkfun LilyPad (does not include switches or sensors onboard –
you will need to order those separately) or the Adaruit Circuit Playground Express (costs $5 more but
also works with Make:Code programming environment).

Circuit Playground

You will need a micro-USB cable (not included in the kit; make sure it has not just power transfer but
data transfer capabilities). For more information on the Circuit Playground see:
http://www.adafruit.com/product/3000 and http://learn.adafruit.com/introducing-circuit-playground.

Connecting to the computer:

Step 1. Open the programming platform (ModKit, Arduino, or Codebender).

Step 2. Select the correct serial port so the software can talk to the LilyPad.

For Mac OS
In Arduino, under the “Tools–>Serial Port” menu, find the entry that looks something like this:
“/dev/tty.usbserial-A900J2Q7.″ Select this port.

Figure 49. Image from http://lilypadarduino.org/.

For PC
In Arduino, under the “Tools–>Serial Port” menu, choose the highest numbered COM port
(it is never Com 1).

14 Codebender. (2016). Codebender [website]. Retrieved from www.codebender.cc.

http://www.adafruit.com/product/3000
http://learn.adafruit.com/introducing-circuit-playground
http://lilypadarduino.org/
http://www.codebender.cc/

 T28

Exploring Computer Science — E-Textiles Technical Guide: BASICS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Figure 50. Image from http://lilypadarduino.org/.

Step 3. Select the correct board so that the software knows we’re using an “Adafruit Circuit
Playground” and not a different Arduino board. Under the “Tools–>Boards” menu, select the entry
appropriate for the board we’re using:

 Adafruit Circuit Playground

Figure 51. Image from https://learn.adafruit.com/introducing-circuit-playground/set-up-test-arduino.

NOTE: You may have to select and re-select the port and board on occasion, especially when you
plug in a device.

http://lilypadarduino.org/

 T29

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

TROUBLESHOOTING

1. Connecting the Circuit Playground to the Computer
Does the computer still have trouble communicating with the Circuit Playground? If we tried all
the steps above and the correct port does not appear, start troubleshooting by following the
suggestions below in order.

Start-up sequence issue: On some computers, the Circuit Playground has to be plugged in before
opening the programming software. Close the programming software completely, unplug and plug
the Circuit Playground back in, then start the software again. Check if the port selection changed at
all.

Computer port issue: There might be a problem with the USB port we are connecting to, this seems
to happen more often with PCs. This apparently happens because the operating system (OS)
automatically "finds” and installs drivers for Arduino boards, but they almost always install the wrong
ones! Close the software, then plug the Circuit Playground into a different USB port. Open the
programming software again and see if a new port selection is available. Also, be sure that the cable
connection is secure on the Circuit Playground and also in the computer port.

Port identity issue: When using the USB ports on the computer for other items (wireless mouse,
keyboard, etc.), there may be more than one option to select from in the port pull-down menu. Unplug
the board, observe all the ports that are there, then plug the Circuit Playground back in to see which
new port appears in the menu. Select that one.

USB cable issue: If the serial port is still not appearing in the menu, try a different USB cable. There
may be slight differences in capacity between a USB cable that’s used for cellphone charging and one
that’s used for development purposes. If we try a different cable and it works, be sure to set aside the
original one so that it doesn’t get used again for e-textiles. This happens often enough that it is
estimated that this is the source of the problem about 50% of the time.

System overload: Sometimes the computer is just overwhelmed! Save all work and restart the
computer. Be sure to plug the Circuit Playground into the computer first before opening the
programming software.

But it was working before!: If we were able to program the board before, but it’s not connecting
now, check the port and board selection again. Try selecting and re-selecting the port and board every
time new code is uploaded to the Circuit Playground. We hope Arduino will have this bug fixed soon!

Material in the Troubleshooting section was adapted from Sew Electric and customized for use with the ECS curriculum.

 T30

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Bad Circuit Playground: When plugging the board in to the computer, a light should turn on and
blink. On the Circuit Playground, this light is marked STAT. Double-check that the board works by
programming just the small LED on pin 13 (try the “Blink” code under Arduino Examples under the file
menu). Every so often, we have a Circuit Playground that doesn’t work properly because it was shorted
in the past or has some other bug that we cannot fix. Static electricity might also affect these
microcomputers. Try the code with a different Circuit Playground by using alligator clips to test the
program on the e-textile. We may have to cut the original Circuit Playground out and sew in a different
one that works.

2. The four stages of programming
We will focus here on the text-based programming platform. If using ModKit, knowledge from Scratch
will help develop programs easily in that environment. Programming the Circuit Playground to do
what we want takes place in four stages in Codebender/Arduino:

1. Write a program
2. Compile/Verify the program
3. Load the program onto the Circuit Playground
4. The program executes on the Circuit Playground 15

First, write the program. In the Codebender/Arduino environment, we code in a programming
language that is a variant of the C/C++ languages. Next, compile or verify the program. In Arduino,
hover the mouse over the Verify/Compile icon (the check button in upper left corner), the word “Verify”
appears at the top of the window. In Codebender, click the “Verify” button. This simultaneously does
two things. First, it translates the code that we wrote to code that the computer chip on the Circuit
Playground can understand. Also, if we’ve made any mistakes in the code, they will be detected during
this phase and we have to “de-bug” them (eliminate all of the programming errors) and recompile the
code before we move on to the next step.

The compiling process takes a few seconds. Once it’s done, Arduino says it’s “Done compiling” and
tells us the size of the sketch (the amount of memory it takes up). Then we load the compiled code
onto the Circuit Playground, officially moving the code from the computer onto the microcontroller.
The Circuit Playground should then execute (run) whatever we coded it to do. If the Circuit Playground
and the components in the circuit are not behaving the way we expected, we have to de-bug those
errors, too. The program will only do what we told it to do, so if something is happening that is
unexpected, think through exactly how we expect that code to run and compare it to our program
code.

15 Adapted from LilyPad. (2013). Basic programming steps. LilyPad. Retrieved from
http://lilypadarduino.org/?page_id=209.

http://lilypadarduino.org/?page_id=209

 T31

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

3. Arduino program structure
Each Arduino program has three main parts: a section where we declare variables, a “setup” section
and a “loop” section. When the program executes, it first defines (names) the variables, then executes
the setup section (initialization section) once, and then executes the loop section (activity section)
over and over. (There may also be a “building blocks” or function definition section after that where
special procedures can be added. We discuss this more in the Human Sensor Project).

Here is an example program in the Arduino window (this looks very similar in Codebender):

Figure 52. Image from http://lilypadarduino.org/.

4. Programming basic commands
All programs execute in a sequential fashion, obeying the written commands (code) line by line in
order as they are written from top to bottom. There are a few different types of commands or code
elements in most programming languages. The most common are comments, simple statements
and conditional statements. Here we describe what these elements look like in Arduino. Go to
Arduino Language Reference (https://www.arduino.cc/reference) for more detailed information.

Comments are pieces of code that are ignored by computers. Use them to make notes in the code,
but they don’t affect the behavior of the program. Comments are useful for reminding us what the
code is supposed to do in the program that we wrote two months ago. They can also communicate
things to people who will see the code in the future. Anything written on a line after two slash
characters // is a comment. Comments show up a greyish brown in the Arduino window. Here are a
couple example comments:

http://lilypadarduino.org/
http://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/reference

 T32

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

// This is a comment. It doesn’t do anything.

// Comments just make code easier for us and other people to understand

Anything written between “/*” and “*/” characters is also a comment. Comments that start with “//”
can only be on one line, but comments between the “/*” and “*/” characters can take up several lines.
Comments always appear in a greyish brown color in Arduino.

/* This is a comment. It doesn’t do anything.

Comments just make code easier for us and other people to understand */

A simple statement is an instruction. It takes up one line and is always followed by a semi-colon. The
semi-colon tells the computer that it is done with that line, now go to the next line. On the left below
are some examples, followed by comments on the right that describes what the statement does.

int LEDPin = 13; // Declares a variable called “LEDPin” and connects pin 13 to this variable.
int switchPin = 2; // Creates a variable called “switchPin”and connects pin 2 to this variable.
int switchValue; // Creates a variable called “switchValue”, but does not initialize it
delay(1000); // Tells the LilyPad to do nothing for 1000 milliseconds (1 second).
digitalWrite(LEDPin, HIGH); // Sets LEDPin (pin 13) to +5 volts or HIGH to turn the LED on.
digitalWrite(LEDPin, LOW); // Sets LEDPin to 0 volts or LOW to turn the LED on the LilyPad off.

For a more thorough explanation of what each simple statement does, and to find more commands,
go to the Arduino Language Reference.

Conditional statements are statements that consist of a condition and then a series of statements
in braces like this { } that execute only when that condition is met. Here is an example of an if
conditional. Notice how it consists of the word “if” and then a condition in parentheses (). We would
read this: “if the variable switchValue is equal to LOW, then turn the LED on.” The two equal signs tells
the microcomputer to check what the value is. One equal sign sets the value to what follows after.

if (switchValue == LOW) { // This line is the condition, followed by the opening brace
 digitalWrite(ledPin, HIGH); // This tells an LED to turn on
} // Finally, there is a closing brace

The example below is a while conditional. This statement reads: “While the variable switchValue is
equal to LOW: Turn the LED on, then do nothing for 100 milliseconds (1/10th of a second), then turn
the LED off, then do nothing for 100 milliseconds, then store a new value into the variable
switchValue.”

http://www.arduino.cc/en/Reference/HomePage

 T33

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

while (switchValue == LOW) { // This line is the condition, followed by the opening brace

 digitalWrite(ledPin, HIGH); // This tells the LED to turn on
 delay(100); // This tells the LilyPad to wait for 100 milliseconds
 digitalWrite(ledPin, LOW); // This tells the LED to turn off
 delay(100); // Wait another 100 milliseconds
 switchValue = digitalRead(switchPin); // This stores a new value into the variable switchValue
} // Closing brace

 T34

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Electrical Problems
Electrical problems arise from either the design or construction of the electrical circuits. These
are physical problems that we’ll need to fix by hand with scissors, a needle, thread, fabric, or glue.
The next section provides examples of common problems in the circuitry, information about how
to find them, and step-by-step instructions for fixing them. 16,17

There are different types of problems that affect the circuitry:
• Loose connections
• Short circuits
• Reversed polarity
• Broken components

SYMPTOM LOOSE CONNECTIONS

Parts of the
project flicker
or only work
some of the
time:
Loose
Connection

Loose Connections occur when the thread that is stitched through a component (like an
LED, speaker, Circuit Playground, battery holder, etc.) is too loose. See Figure 53 for a visual
example. If the thread is loose, there will not be a consistent electrical connection between
the thread and the component. To carry electricity through the circuit, the thread must be
tightly pressed up against the metal pins of the component. Loose connections can be
caused by loose stitching or unraveling knots. If a knot is not secured with glue, it can come
undone, loosening the connections near it.

Figure 53: Loose connection on the left, secure connection on the right

Image from www.kitronik.co.uk.

Check for Loose Connections: Gently bend and stretch the project. If this causes the LED
to turn on and off, a loose connection is likely. Look carefully at the connections between
the thread and the components, and check both the front and back sides of the fabric.
Make sure each connection is snug and tight. If there is loose thread around any metal pin
or an unraveling knot, we’ll need to fix it.

Fixing Loose Connection Points: To fix loose connections at component pins, thread the
needle with conductive thread. From the back or underside of the fabric, push the needle
up through the pin with the loose connection. Loop through the pin a few times. Make sure

16 Buechley, L., Qiu, K., Goldfein, J., & de Boer, S. (2013). Sew electric: A collection of DIY projects that combine
fabric, electronics, and sewing [online version]. Retrieved from www.sewelectric.org/troubleshooting/electrical-
problems/.
17 Kitronik (n.d.). Finding fault in e-textiles. Kitronik Ltd. Retrieved from www.kitronik.co.uk/blog/fault-finding-in-
e-textiles/.

http://www.kitronik.co.uk/
http://www.sewelectric.org/troubleshooting/electrical-problems/
http://www.sewelectric.org/troubleshooting/electrical-problems/
https://www.kitronik.co.uk/blog/fault-finding-in-e-textiles/
https://www.kitronik.co.uk/blog/fault-finding-in-e-textiles/

 T35

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

SYMPTOM LOOSE CONNECTIONS

the thread is touching the original stitches we sewed in several places. Push the needle to
the back or underside of the fabric. Tie a snug knot, making sure that the new thread
is pulled tightly against the pin and the old stitching, and secure the knot with a little bit of
glue. Remember not to add too much glue, since that can also cause connectivity issues.

Figure 54: Adding tighter loops to fix a loose connection

Image from www.sewelectric.org, CC BY-NC-SA 3.0.

Fixing Unraveling Knots: If there is a knot that is unravelling, find the end of the thread
and pull it to re-tighten. Cut out a small piece of fabric and glue it down over the unravelling
thread to hold the thread in place. Some stitches may have to be resewn if they have come
undone, and they were meant to be connected. Tie the unraveled thread to the new thread
in several places to make a solid electrical connection. Glue (in moderation) may also make
those connections more secure (Figure 55).

Figure 55: Securing down thread that unraveled
Image from www.sewelectric.org, CC BY-NC-SA 3.0.

SYMPTOM SHORT CIRCUITS

Parts of the
project don’t
work, only
work some of
the time, or
flicker on and
off:
Short Circuit

Short Circuits or “shorts” happen when two threads that should not touch come into
contact with one another, creating a convenient “shortcut” for the current. Electricity will
always travel the path of least resistance, so if there is a shortcut, it will bypass the lights,
sensors, switches, etc. So the power (+) and ground (-) traces in a circuit should never ever
touch one another in e-textiles. It is okay for traces of the same polarity to be touching each
other, though. For instance, all of the threads attached to the ground (-) pin can touch each
other, but the positive (-) thread attached to Pin 9 should never touch the thread attached
to the ground (-) tab. This can get very confusing in the more advanced projects where we
might program some of the Circuit Playground pins to be negative and the others to remain
positive. Always remember: negative to negative, positive to positive!

http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T36

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

SYMPTOM SHORT CIRCUITS

Removing Loose Threads: From the back of the fabric (if possible), pull on the loose thread
until it is gathered in one spot. Cut out a small piece of fabric, apply a small amount of glue
to it, and tuck the extra thread behind it, making sure that the extra thread no longer
touches any neighboring traces or pins (Figure 56). If there is a lot of excess thread, we may
want to tie it into a tighter knot instead and cut off the excess.

Figure 56: Moving excess thread away from other traces or pins

Image from www.sewelectric.org, CC BY-NC-SA 3.0.

Eliminating Long Thread Ends: To eliminate long knot tails, trim them down to 1/4” (6mm)
or shorter. Once we know that those traces function correctly, seal the knots with glue so
that they do not come unraveled. Make sure that the tails do not brush up against any
neighboring traces. We can also glue a small piece of fabric down over the knot tails to
keep them from unravelling and touching other traces (Figure 57).

Figure 57: Eliminating thread tails that are too long

Image from www.sewelectric.org, CC BY-NC-SA 3.0.

Fixing a Stitched-Across Component: If we have sewn the (+) side of a component to its
(-) side, we will need to cut the thread that is connecting the two pins. We will be left with
two very short threads. Tug on each thread tightly, move it away from the other thread, and
glue it down with a small piece of fabric (Figure 58).

http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T37

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

SYMPTOM SHORT CIRCUITS

Figure 58: Separating the thread connecting the (+) and (-)

Image from www.sewelectric.org, CC BY-NC-SA 3.0.

Troubleshooting Parallel Circuitry: Another common “stitch across” error happens for
novice crafters when transitioning from a single LED to building a parallel circuit. It’s natural
to want to do all the sewing at once, to try to connect everything without cutting the thread
and tying unnecessary knots. In Figure 59, the circuit functions perfectly with one light, but
in extending out to add another light (dotted lines), the red (positive) and the black
(negative) traces were connected without leaving space for the component. This will result
in a short, and none of the circuit will work. To fix this, create a small gap for the second
LED by cutting the thread and tying the thread ends onto the new LED wires. Reinforce the
new connections with extra stitches.

Figure 59: Mind the gap! Remember to leave a "gap" for any components we want to add

Image from www.kitronik.co.uk.

Removing Stitching Across a Battery Holder: People often stitch across the battery
holder and cause shorts. How? The piece of metal across the top of the battery holder is
positively (+) charged. If we sewed across, we will have to remove the negative trace and
stitch around the battery holder. If we did this with the positive trace, the circuit may
function, but this part of the circuit should eventually be rerouted because the thread is
loose and will eventually catch on something, break, or cause a short circuit.

Fixing Overlapping Stitches: If there is an area in the project where two traces cross and
touch, separate the two traces by putting something in between. Glue a piece of fabric or
place tape (something non-conductive) in between the two lines to keep them apart.

http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.kitronik.co.uk/

 T38

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

SYMPTOM SHORT CIRCUITS

Figure 60: Fixing two traces that were accidentally crossed

Image from www.sewelectric.org, CC BY-NC-SA 3.0.

SYMPTOM REVERSED POLARITY

The project
does not turn
on at all, or
areas
connected to
certain
components
do not work:
Reversed
Polarity

When we stitch the (+) side of a component to the (-) side of a battery (or the (-) pin of the
ProtoSnap), and the (-) side of a component to the (+) side of a battery (or one of the
numbered pins on the ProtoSnap), there is Reversed Polarity and it will not work. Electricity
will only flow through most components in one direction—from the (+) to the (-) side of a
component. This mistake can easily occur when stitching on both the front and back sides
of the fabric, because the back side of the fabric should be the mirror image (opposite) of
the circuit diagram. That means the circuit diagram may show stitching to the right side of
the component, but if the fabric is flipped to the back side, that stitching will appear to be
on the left side. If an LED is connected backwards, the circuit will not be complete either. If
using wired LEDs, remember that the longer wire on the LED is the positive (+) side, and the
shorter wire and the flattened plastic mark the negative (-) side.

To Find Reversed Polarity: Look carefully at each component in the project and compare
the front side of the fabric to the circuit diagram. Make sure that each component’s negative
(-) pin is stitched to the matching negative (-) circuit, and that each component’s positive (+)
pin is sewn to only other positive (+) components. A common problem is that the battery is
inserted upside down (the battery holder is marked as (+) on the top and (-) on the bottom).

Figure 61: Identifying a reversed component

Image from www.sewelectric.org, CC BY-NC-SA 3.0.

http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T39

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

SYMPTOM REVERSED POLARITY

Figure 62: The battery must be inserted with the (+) side up.

Image from www.sewelectric.org, CC BY-NC-SA 3.0.

Fixing Reversed Polarity: Unfortunately, there may not be an easy way to fix reversed
polarity. One solution is to remove the component and rotate it into the correct orientation,
or undo some of the stitching and reattach the components with some new stitches. If
stitches need to be cut to remove the component, think about where to cut to save as many
stitches as possible (Figure 63). Maybe new thread can be spliced to the existing thread to
minimize extra sewing. Once the component is removed, tape it down in the correct
orientation. Double check that it is correctly aligned, then resew.

Figure 63: Cutting loose a component that was sewn in backwards

Image from www.sewelectric.org, CC BY-NC-SA 3.0.

Thread the needle with conductive thread. Begin with the (-) trace. On the back side the
fabric (if possible), tie the new thread to the old stitching on the (-) trace so the new knot is
not visible from the front. Sew toward the reattached component. Make sure the new
thread is touching the original stitches in several places. Stitch through the (-) pin of the
component three times. Tie a knot on the underside of the fabric, trim its tails, and seal it
with a dab of glue. Repeat the same process for the (+) pin of the component.

Figure 64: Splicing the cut thread with new thread to reattach a component

Image from www.sewelectric.org, CC BY-NC-SA 3.0.

http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T40

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Code Problems – Compile Errors

There are two common types of error messages in programming. Compile errors are errors that
happen when we attempt to compile code and the compiler (i.e., Arduino) finds an error in it. The
following examples are all errors from Arduino. The error message box has a scroll bar on the
right, and the errors may be longer than expected. Scroll to the top of the black error box at the
bottom of the Arduino window. If the name of the program followed by .ino in orange text is at
the top of the box, it is a compile error (in this case, Blink.ino is our program).18

A FUNCTION-DEFINITION IS NOT ALLOWED HERE BEFORE ‘{’ TOKEN
Blink.ino: In function ‘void setup()’:
Blink:19: a function-definition is not allowed here before ‘{’ token
Blink:24: Correction: expected ‘}’ at end of input

Compile errors can be confusing, since the error that it is referencing might not be on the line it says
it is. For example, in this error the compiler found a code problem on line 19 and line 24 (Blink:19,
Blink: 24). This error could be because the program has the curly brace in the wrong spot, or maybe
it was forgotten completely. In this case, it looks like both curly braces were forgotten, since line 24
says that the compiler “expected ‘}’ (a closing curly brace) at the end of input (program). Compile errors
often occur because of syntactical mistakes like this. They can occur if the program tries to use a
variable that has not been initialized yet, or if there is extra text anywhere in the program, such as a
comment line that was accidently un-commented. With a compile error, carefully read the messages
in the error box of the Arduino window. Investigate the code where Arduino highlights or jumps to. If
there are no visible problems in that area, carefully read through the entire program line by line,
looking for the problems described in this section.

Common compile errors
• Missing semicolons ;
• Missing curly braces { }
• Missing parentheses ()
• Missing commas ,
• Misspellings and mis-capitalizations DigitalWrite vs digitalwrite
• Missing variable initializations int LED; vs int LED=;
• Extra text in program /comment vs //comment

18 Buechley, L., Qiu, K., Goldfein, J., & de Boer, S. (2013). Sew electric: A collection of DIY projects that combine
fabric, electronics, and sewing [online version]. Retrieved from http://sewelectric.org/troubleshooting/code-
problems-compile-errors/.

http://sewelectric.org/troubleshooting/code-problems-compile-errors/
http://sewelectric.org/troubleshooting/code-problems-compile-errors/

 T41

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Missing semicolons ;
Symptoms

The error says: Correction: expected ‘;’ before…. So either in the orange or the black error box, we’re
missing a semicolon. Arduino usually highlights the line immediately after the missing semicolon to
indicate the location of the error.

int led = 13_

void setup() {
 pinMode(led, OUTPUT);
}
EXPECTED UNQUALIFIED-ID BEFORE NUMERIC CONSTANT
Blink:11: Correction: expected unqualified-id before numeric constant
Blink:13: Correction: expected ‘,’ or ‘;’ before ‘void’

Here, line 13 states that the compiler expected to find a semi-colon before it started reading the setup
content (void setup). It can be fixed by adding the semi-colon after the number 13 on the line above.

void loop() {
 digitalWrite(led, HIGH);
 delay(1000);
 digitalWrite(led, LOW);
 delay(1000)_
}
EXPECTED ‘,’ OR ‘;’ BEFORE ‘}’ TOKEN
Blink.ino: In function ‘void loop()’:
Blink:24: Correction: expected `;’ before ‘}’ token

This example is states that in the void loop function, the last line before the closing curly brace (line
24) is missing its semi-colon. Fix it by adding the semi-colon like so: delay(1000);

Fixing semicolon issues

Look for instances of Correction: expected ‘;’. Replace the missing semicolon and recompile.

Missing curly braces { }
Symptoms

There is a ‘{’ or ‘}’ in the orange or black feedback area. Arduino will sometimes highlight the line
immediately after the missing curly brace to indicate the location of the error. Sometimes,
unfortunately, it will highlight a completely unrelated line! Grrr…

void setup() {
 pinMode(led, OUTPUT);
_
A FUNCTION-DEFINITION IS NOT ALLOWED HERE BEFORE ‘{’ TOKEN
Blink.ino: In function ‘void setup()’:
Blink:19: a function-definition is not allowed here before ‘{’ token
Blink:24: Correction: expected ‘}’ at end of input

 T42

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

We can see that the closing curly brace } is missing. Add it to fix this bug.

void setup()_
 pinMode(led, OUTPUT);
}
EXPECTED INITIALIZER BEFORE ‘PINMODE’
Blink:16: Correction: expected initializer before ‘pinMode’
Blink:17: Correction: expected declaration before ‘}’ token

We can see that the opening curly brace { is missing, add it to fix this bug.

Fixing curly brace issues

Look for mentions of ‘{’ or ‘}’ in the error box and correct them. Recompile.

Missing parentheses ()
Symptoms

The error says ‘(’ or ‘)’ token in either the orange or black error box, and may also highlight the line
with the missing parenthesis to indicate the location of the error.

void setup(_{
 pinMode(led, OUTPUT);
}
VARIABLE OR FIELD ‘SETUP’ DECLARED VOID
Blink:14: Correction: variable or field ‘setup’ declared void
Blink:14: Correction: expected primary-expression before ‘{‘ token

This one can be confusing, since the error says nothing about a missing parenthesis. The compiler is
calling the parenthesis a “primary-expression”. It is saying that if we are not adding any arguments
inside of the parenthesis for the function “setup” to use, we need to remember to close the
parenthesis to indicate that what is returned is nothing, a.k.a. “void”.

void loop() {
 digitalWrite(led, HIGH);
 delay(1000_;
 digitalWrite(led, LOW);
 delay(1000);
}
EXPECTED ‘)’ BEFORE ‘;’ TOKEN
Blink.ino: In function ‘void loop()’:
Blink:22: Correction: expected `)’ before ‘;’ token

 Oops! Looks like we forgot a closing parenthesis on line 22.

Fixing missing parentheses ()

Look for mentions of ‘(’ or ‘)’ in the errors. Look for errors that are similar to the ones above. Replace
the missing parenthesis and recompile.

 T43

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Misspellings and mis-capitalizations
Symptoms

Error will say ‘________’ was not declared in this scope. Arduino may also highlight the line to indicate
the location of the error. Also, if one of the built-in Arduino procedures or variables is incorrect, the
color of the misspelled or mis-capitalized word will not change to the correct color, orange or blue;
instead it stays black. This gives another valuable clue about the cause of the error.

void loop() {
 digitalWrite(led, HIGH);
 delay(1000);
 digitalWrite(led, LOW);
 dellay(1000);
}
‘DELLAY’ WAS NOT DECLARED IN THIS SCOPE
Blink.cpp: In function ‘void loop():
Blink:21: Correction: ’dellay’ was not declared in this scope

When spelled correctly, delay turns orange, indicating that Arduino recognizes this function. Here it is
spelled incorrectly and the text stays black. Remove the extra ‘L’ to fix the problem.

void loop() {
 digitalWrite(led, HIGH);
 delay(1000);
 digitalWrite(led, low);
 delay(1000);
}
‘LOW’ WAS NOT DECLARED IN THIS SCOPE
Blink.ino: In function ‘void loop()’:
Blink:23: Correction: ‘low’ was not declared in this scope

Again, we can see that ‘low’ is not capitalized, so Arduino never recognized it or changed the text to
blue. Capitalize all of ‘LOW’ to fix this bug.

if (sensorValue < 1000)
{
 LightPattern1(2000);
}
‘LIGHTPATTERN1’ WAS NOT DECLARED IN THIS SCOPE
patrick.ino: In function ‘void loop()’:
patrick:29: Correction: ‘Song’ was not declared in this scope

Here we called LightPattern1 for 2 seconds (2000 milliseconds). It didn’t work because our variable is
named lightPattern1 not LightPattern1. If that is the case, correct the case.

Fixing misspellings and mis-capitalizations

Correct the misspelling or mis-capitalization and recompile.

 T44

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Missing variable declarations
Symptoms

Errors say ‘________’ was not declared in this scope. Arduino highlights the first line in our program
that uses the missing variable.

// missing int led=13; line

void setup()
 pinMode(led, OUTPUT);
}
‘LED’ WAS NOT DECLARED IN THIS SCOPE
Blink.ino: In function ‘void setup()’:
Blink:4: Correction: ‘led’ was not declared in this scope
Blink.ino: In function ‘void loop()’:
Blink:9: Correction: ‘led’ was not declared in this scope

This program shows two errors, one in the setup function and one in the loop function. Both of them
are caused because we forgot to declare the variable led and link it to a specific pin on our board.
When the program tries to use it, it can’t find it. We can fix this by adding int led = 13;

int led1 = A4;
int led2 = 5;
// missing int aluminumFoil=A2; line
int sensorValue;
‘ALUMINUMFOIL’ WAS NOT DECLARED IN THIS SCOPE
patrick.ino: In function ‘void setup()’:
patrick:18: Correction: ‘aluminumFoil’ was not declared in this scope
patrick.ino: In function ‘void loop()’:
patrick:24: Correction: ‘aluminumFoil’ was not declared in this scope

The commented-out line that is highlighted was done to show what the error looks like if we forgot to
declare the variable aluminumFoil. We also initialize it to pin A2 which is one of our analog pins on
the board.

Fixing missing variable definitions

Check for missing or misspelled variable definitions at the top of the code. Correct or add
the necessary definitions and recompile.

Extra text in program
Symptoms

A common extra text error is a mistyped comment—a comment that is missing a ‘/’, ‘/*’ or ‘*/’. If there
is a mistyped comment, its color will be black instead of grey, giving us a clue to the problem. Arduino
may highlight the line where it has found extra text.

 T45

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

void loop() {
 digitalWrite(led, HIGH); x
 delay(1000);
 digitalWrite(led, LOW);
 delay(1000);
}
‘X’ WAS NOT DECLARED IN THIS SCOPE
Blink.ino: In function ‘void loop()’:
Blink:9: Correction: ‘x’ was not declared in this scope
Blink:10: Correction: expected `;’ before ‘delay’

void setup() {
 / this is Jaime’s pattern
 digitalWrite(led, HIGH);
 delay(1000);
 digitalWrite(led, LOW);
 delay(1000);
 {
 ...
EXPECTED PRIMARY-EXPRESSION BEFORE ‘/’ TOKEN
banner.ino: In function ‘void setup()’:
banner:9: Correction: expected primary-expression before ‘/’ token

Here we forgot the second /, which would turn the text grey and cause our comment to be ignored by
the computer.

Fixing extra text problems

Correct the typos or remove the extra text from the code. Recompile.

 T46

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Code Problems – Logical Errors
When the code compiles and uploads, but it doesn’t behave the way that we want it to, we might
have a logical error. These errors are tricky to troubleshoot because Arduino doesn’t give us
any feedback about what might be causing the problem, like it does with compile and upload
errors. The code compiles and the Circuit Playground is following the code exactly as we have
written it, but there is an error in the code that is making the project behave in an unexpected
way. If the project doesn’t do anything or keeps doing the wrong thing, there might be a logical
error.

Finding logical errors in code

First go through the Troubleshooting: Electrical Problems section to eliminate the possibility of
circuitry issues. Then check the code for logical errors. The Circuit Playground does exactly what
the program tells it to do, so identifying if there is a mismatch between what we want it to do and
what the program is telling the board to do can be helpful. Having another person “read” the
code and tell us what it is supposed to do and in what order can help diagnose this bug. The
errors listed below are the most common; however, there is an infinite variety of logical errors
and this guide cannot cover them all.

• Missing variable initializations
• Variables that do not match circuit
• Conditions that are always true or false
• Extra or misplaced semicolons
• Incorrect variable initializations
• Problems with delay statements

Missing variable initializations
Symptoms

A component either does not work at all, or barely works. If there is a very dim LED making very faint
sounds, there might be missing a pinMode(component variable, OUTPUT); statement. This can also
be an INPUT.

EXAMPLE CORRECTION
int led = 13;

void setup() {
}

int led = 13;

void setup() {
 pinMode(led, OUTPUT);
}

 T47

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

If a sensor or switch gives random or erratic readings, there might be missing a
digitalWrite(component variable, HIGH); statement. This can also be LOW.

EXAMPLE CORRECTION
void setup() {
 pinMode(led, OUTPUT);
 pinMode(speaker, OUTPUT);
 pinMode(aluminumFoil,
INPUT);
 Serial.begin(9600);
}

void setup() {
 pinMode(led, OUTPUT);
 pinMode(speaker, OUTPUT);
 pinMode(aluminumFoil, INPUT);
 digitalWrite(aluminumFoil,
HIGH);
 Serial.begin(9600);
}

Fixing missing variable initializations
Look in the setup function. Each component must be initialized in setup with a pinMode statement.
Each sensor or switch should also have a digitalWrite(component variable, HIGH); statement
in setup. It could also be set to LOW depending on what the program needs to do. Add the missing
statements and recompile.

Variables that do not match circuit
Symptoms

A component in the project is not working at all because the code does not match the circuit. For
example, if the LED is connected to pin 6, but the code is written as though the LED is sewn to pin 5,
the LED will not work.

EXAMPLE CORRECTION

int LED = 5; int LED = 6;

Fixing variables that do not match

If a component is not working at all, look carefully at the circuit and see which pins each of the
components are sewn to. Make sure the code matches the circuit. If there are any places where circuit
and code don’t line up, that is a bug.

NOTE: See also the “Incorrect variable initializations” section below.

Address this problem in two different ways. Either re-stitch the circuit or rewrite the code to match
the circuit that is sewn. The second option is almost always easier!

Conditions that are always true or false
Symptoms

If something that should happen in the program never happens, or if something happens all the time
when it shouldn’t, there may be a condition being read as always true or always false because the
threshold values are too high or set incorrectly.

 T48

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

EXAMPLE CORRECTION
sensorValue =
analogRead(aluminumFoil);
Serial.println(sensorValue);
delay(100);
if (sensorValue < 1024)
{
 1ightPattern1(2000);
}

sensorValue =
analogRead(aluminumFoil);
Serial.println(sensorValue);
delay(100);
if (sensorValue < 1000)
{
 lightPattern1(2000);
}

Here, the sensorValue is set too high at 1024, causing the conditional to always be true. If we lower
the value to 1000, another pattern can be called in the 1000 to 1024 range.

Fixing conditions that are always true or false

Look carefully at the conditional statements in the program—if else statements and while loops.
Make sure that the conditions in each statement will actually change as the program progresses or
with different sensor readings. Once the problem is identified, revise the conditions to appropriate
thresholds so that the program will progress as people interact with the project. Make sure not to get
stuck in while loops because of missing i = i + 1; statements.

NOTE: Extra and/or misplaced semicolons can create similar problems (see below).

Incorrect variable initializations
Symptoms

The wrong component is executing code designed for a different component.

Variables are the foundation of the program. If a variable is given the wrong value at the beginning of
the program, it can cause lots of different problems. When pin variables don’t match the circuit, it is
also a form of incorrect variable initialization (an error covered in “Variables that do not match circuit”
earlier). Other initialization problems may be subtler like this example.

EXAMPLE CORRECTION
int led1 = 5;
int led2 = 6;
int led3 = 2;
int led4 = A3;
int led5 = A4;

int led1 = 5;
int led2 = 6;
int led3 = A2;
int led4 = A4;
int led5 = A3;

On the ProtoSnap board, the LED pin numbers are already assigned. Many people don’t realize that
the numbers are not in order on the board, and that the analog pins have an A in front of them. Here,
led3 will not turn on at all because pin3 is already pre-programmed to the slider switch. LEDs 4 and 5
will blink out of order because their pin numbers are switched.

Another common issue occurs when copying and pasting code from the one project to the other,
because the pin numbers assigned may change from project to project.

 T49

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Fixing incorrect variable initializations

Look for the variables related to the areas that are not functioning properly. Compare the variable
definitions; identify the ones that are initialized incorrectly, revise, and recompile.

Problems with delay
Symptoms

The delays are too short, too long, missing altogether, or the computer is hanging or crashing. If
a delay is too short, it may seem like things that should be happening are not happening. Take a look
at the following examples.

EXAMPLE CORRECTION
void loop() {
 digitalWrite(led, HIGH);
 delay(1);
 digitalWrite(led, LOW);
 delay(1);
}

void loop() {
 digitalWrite(led, HIGH);
 delay(1000);
 digitalWrite(led, LOW);
 delay(1000);
}

In this first example, the delays after the digitalWrite(led, HIGH); and digitalWrite(led, LOW); statements
are very short. A delay(1); means to wait for one millisecond—that’s 1/1000 of a second, a tiny amount
of time. The LED may look like it’s on dimly all of the time, may not activate the LED at all, or do so
quickly that it’s almost not perceptible.

If the program seems to never respond or respond very slowly, the delay may be too long or a series
of delays taking too much time. In the code below, delay(20000); will make the project stop and do
nothing for 20,000 milliseconds—that’s 20 seconds! This means waiting 20 seconds before the project
can proceed.

EXAMPLE CORRECTION
void lightPattern1() {
 digitalWrite(led1, HIGH);
 delay(2000);
 digitalWrite(led1, LOW);
 delay(2000);
 digitalWrite(led2, HIGH);
 delay(2000);
 digitalWrite(led2, LOW);
 delay(20000);
}

void lightPattern1 () {
 digitalWrite(led1, HIGH);
 delay(2000);
 digitalWrite(led1, LOW);
 delay(2000);
 digitalWrite(led2, HIGH);
 delay(2000);
 digitalWrite(led2, LOW);
 delay(2000);
}

If the project is freezing or crashing the computer, it may be sending data back to the computer
with Serial.println statements and overloading the computer with too much data.

 T50

Exploring Computer Science — E-Textiles Technical Guide: TROUBLESHOOTING

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Fixing delay problems

Pay particular attention to the delay statements. If a component seems like it’s not working, or if
entire sections of code take a long time to execute, look for delays that are too short or too long.
Remember that programs execute line by line in order and the Circuit Playground can only do
one thing at a time, even though it does those things very fast. When a delay is used, the entire
program stops until that delay is finished, and then it will move on to the next part of the program.
Experiment with changing the delay times. If the computer crashes, add a delay statement to the
program right after the Serial.println statement. Recompile.

***.

UPLOAD CORRECTION:

SERIAL PORT ‘/DEV/TTY.BLUETOOTH-MODEM’ ALREADY IN USE. TRY QUITTING ANY PROGRAMS
THAT…
Binary sketch size: 4,962 bytes (of a 30,720 byte maximum)
processing.app.SerialException: Serial port ‘/dev/tty.Bluetooth-Modem’ already in
use. … uiting any programs that may at processing.app.Serial.(Serial.java:171)
at processing.app.Serial.(Serial.java:77)

 T51

Exploring Computer Science — E-Textiles Technical Guide: MATERIALS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

MATERIALS

Electronic textile materials and tools
Coin cell battery
A 3-volt battery whose code name is CR2032. This code means that
the battery is 20mm in diameter and 3.2mm thick. Flat, round
batteries like these are called coin or button cell batteries because
of their shape.

Figure 65: Coin cell battery
Image from www.sparkfun.com,

CC BY-NC-SA 3.0.

Coin cell battery holder
A sewable battery holder for the CR2032 coin cell battery.
Alternatively, a battery pouch could be made out of fabric.

Figure 66: Coin cell battery holder
Images from www.sparkfun.com,

CC BY-NC-SA 3.0, & www.kitronik.co.uk.

Conductive thread
A thread capable of carrying electric current. The one we use is
spun from fine stainless steel wires, it can be purchased in small
quantities on bobbins or larger quantities in spools. Other types
of conductive thread include silver-plated threads and gold-
wrapped embroidery threads. Be aware that thread with silver in
it will tarnish over time and causing conductivity issues.

LED
A small sewable LED (light-emitting diode), or a standard “through
hole” LEDs. Simply twist their legs into sewable loops. To help with
remembering which leg is positive and which leg is negative,
always do the same pattern for positive (square or zigzag) and the
same pattern for negative (simple twisted loop).

Figure 68: LED
Images from

www.sparkfun.com.

Figure 67: Conductive
thread

Images from
www.adafruit.com.

Materials section based on:

Buechley, L., Qiu, K., Goldfein, J., & de Boer, S. (2013). Sew electric: A collection of DIY projects that combine fabric,
electronics, and sewing [online version]. Retrieved from http://sewelectric.org/references/glossary/.

http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.sparkfun.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.kitronik.co.uk/
http://www.adafruit.com/
http://sewelectric.org/references/glossary/

 T52

Exploring Computer Science — E-Textiles Technical Guide: MATERIALS

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

USB Cables
A USB 2.0 A to Micro-B Cable connects the Circuit Playground to the computer. This is another
common cable that we often have around the house from other electronics.

Be aware that USB cables often malfunction or are made slightly differently. Some do not have the
same data transferring capacity as the ones we use in e-textiles. If the computer does not recognize
the Circuit Playground, go to the Troubleshooting: Connecting the Circuit Playground and the
Computer section, and see if the cable might be the issue.

Crafting materials and tools
Glue
Any standard craft glue will work well for sealing knots, including fabric glue or Elmers® glue. Use
fabric glue or felt glue to attach one piece of fabric to another. The larger the pieces of fabric, the less
effective the glue will be.

Large-eyed needle
“Chenille” needles sized 18-24 are very easy to thread and fit through the holes in Circuit Playground
pieces. More experienced sewers may want to use a smaller needle, but be careful, smaller needles
are much harder to thread and may be sharper. Larger needles may leave larger holes in the fabric.

Seam ripper
A small tool used for ripping/cutting out stitches. There is a protective ball on one end to help prevent
jabbing a person, or accidently cutting into the material instead of the stitch.

Polyester filling
The material that’s inside pillows and stuffed animals. Have an extra pillow? Scavenge
the stuffing to make a plush e-textile toy! When buying stuffing, go for the synthetic
kind. Do not use pellets or feathers.

Felt sheets
These thick non-stretch fabrics are easy to sew and come in many colors and can be
found at any craft store or Walmart. They are made out of spun plastic, so caution
should be taken if attempting to use with a hot iron. Normally a sheet of paper
between the felt and the iron is enough to use Iron-On adhesive without melting the
felt. Other fabrics that don’t unravel include wool felt and polar fleece.

Aluminum foil
Standard aluminum foil, heavy-duty. Do not try to use the non-stick variety.

Iron-on adhesive
Thermoweb®’s Ultra Hold Heat-n-Bond adhesive. We’ll need the sheet, not the tape.
This is machine-washable, and should not gum up the sewing needles.

Figure 69: Heat-n-
Bond adhesive

Image from
www.craftsy.com.

http://www.craftsy.com/

 T53

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

IDEAS & INSPIRATION

DIY Sensor Ideas

Making touch sensor patches

Attaching the touch sensor to the project

Electronic Textile Design Ideas

Activity 1: Electronic greeting card

Activity 2: Electronic wristband

Activity 3: Mural project

Activity 4: Human Sensor Project

 T54

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Do-It-Yourself Sensors
The tactile sensor we need for the Human Sensor Project is made of aluminum foil. Use an iron
to first line the foil with adhesive. Then measure out and cut the patches out for the project, peel
off the paper backing from the adhesive sheet, stick the patches onto the project with the iron (if
the project is flat) or a crafting iron (if the project is three-dimensional), and then sew them with
conductive thread to connect them to the Circuit Playground.19 You can also view a video tutorial
of how to make a large scale production of conductive patch material to be cut up into conductive
patches as needed.

Making touch sensor patches
Materials:

• Aluminum Foil (heavy-duty, do not use non-stick)
• Heat ‘n’ Bond Iron-on Adhesive (double-sided, ultra-hold)
• An Iron and an Ironing Board
• Cover for the Ironing Board (can be a piece of scrap fabric or paper)
• Scissors (not sewing)
• Writing Implement (optional)
• Crafting Iron (optional)

Making sensor patches:

Step 1: Read the instructions on the Iron-on Adhesive packaging to find the correct temperature
setting for the iron. Do NOT use the steam setting!

Step 2: Pre-heat the iron and cover the ironing board with paper or scrap fabric. This is to keep
the melted adhesive from sticking to the ironing board.

Step 3: Tear off a piece of foil that matches the width of the iron-on interface. It’s best to keep the
foil in large rectangular pieces at this time. These sheets can be provided to students who can
trace their designs on the paper side, cut them out, and then iron on the smaller pieces late. Place
the aluminum foil on the ironing board, shiny-side down if we want the sensors to be shiny, matte-
side down if we want the sensors not to be shiny.

Step 4: Cut off a matching piece of iron-on adhesive. It can be a little bit smaller than the foil, but
not any bigger than the piece of foil. Place it rough and shiny (adhesive) side down onto the foil.

19 Buechley, L., Qiu, K., Goldfein, J., & de Boer, S. (2013). Sew electric: A collection of DIY projects that combine
fabric, electronics, and sewing [online version]. Retrieved from www.sewelectric.org/diy-projects/interactive-
stuffed-monster/give-your-monster-a-sense-of-touch/.

https://drive.google.com/file/d/1qaiNw6N1PpObwiMZI2ZPD-b0XnBNfffe/view
http://www.sewelectric.org/diy-projects/interactive-stuffed-monster/give-your-monster-a-sense-of-touch/
http://www.sewelectric.org/diy-projects/interactive-stuffed-monster/give-your-monster-a-sense-of-touch/

 T55

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Step 5: Place the iron on top of the adhesive sheet, count to five (or see instructions on the
adhesive product). Move the iron to another spot, iron each spot for five seconds. When we’re
done, the adhesive should be fused flat against the foil. If we missed any spots, iron those spots
again. Make sure that the adhesive is firmly attached by peeling up a small corner of the paper. It
should peel away easily and a clear layer adhesive should be stuck to the foil. Just peel up enough
paper to check on the adhesive – don’t remove the paper yet.

Step 6: Turn off the iron if it won’t be used anymore!

Figure 70: Using an iron
Images from www.sewelectric.org, CC BY-NC-SA 3.0, & www.kobakant.at.

NOTE: The adhesive melts with heat. We use it alumium foil to the adhesive, and later to the fabric.
If one makes a mistake in a project, it can be removed by ironing it again and pulling it off while
still very hot. This will leave behind some sticky residue but at least allows for emergency
adjustment of patches when necessary.

Attaching the touch sensor to the project
Now measure out and design the sensor patches. The sensors can
better gather information when they are sized at least two inches
around (bigger patches = greater surface area = wider sensor range).
Circles and square patches work really well and are simpler to cut out
than custom-designed patches. If we need two mirror-image patches
(like a left hand and a right hand), draw the outline onto the paper
(adhesive-side).

Keep in mind that we want the foil-side to be on the front of the project.
A shortcut is to fold the foil and adhesive in half and cut two patches out
at the same time. This works if the patches are mirror-image.

Tip: Sketch out the patch on a blank piece of plain paper, cut it out, then flip it upside down, and trace
it onto the paper side of the aluminum foil. Then cut out the conductive patch. It’s important to flip it
upside down because the foil side will be up (not the paper side) in the final product. [If this sounds
confusing, play around with it!]

Figure 71: Designing sensor
patches

Image from www.sewelectric.org,
CC BY-NC-SA 3.0.

http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.kobakant.at/
https://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T56

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Pre-heat the iron. Crafting irons have smaller plates and may be easier for ironing surfaces that are
not flat. Check to make sure the patches fit on the project. Peel the paper off, place the adhesive side
down onto the fabric, and make sure again that the aluminum foil faces out. Use the five-second guide
and iron the patches onto the fabric spot by spot, holding the iron on it for five counts.

WARNING: Irons are hot! They will burn you if you touch the metal plate.

WARNING: The adhesive might ooze out and stick to the iron (or on the project,
someone’s skin or clothes). Use rubbing alcohol to remove.

WARNING: Be careful when ironing patches to felt. Felt is made of spun plastic and
the project will melt at high temperatures!

Figure 72: Ironing patch
Image from www.sewelectric.org, CC BY-NC-SA 3.0.

http://www.sewelectric.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/

 T57

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Electronic Textiles Design Ideas
Makers, even the most experienced ones, often have difficulty coming up with ideas. While the
ECS curriculum provides some examples of projects, we find that seeing a broad database of
images sometimes gets our own creative juices to flow. Below are some inspiring ideas of finished
products for all of the e-textiles activities in the ECS curriculum.

Activity 1: Electronic greeting card
There are two design options for this project: We can use the copper tape as part of the visible design
(left) or overlay the copper circuitry with another piece of paper (right).20

The simpler option is to design a paper cover to go over the circuit, like in Figure 74, and use the
rectangular circuit template provided by Chibitronics (Figure 75).

Figure 75: Simple template provided by Chibitronics

Image from www.chibitronics.com.

20 Qi, J. (2014). Circuit stickers tutorial. Chibitronics, PTE LTD. Retrieved from www.chibitronics.com.

Figure 73: The copper tape as part of a
visible design

Image from www.crowdsupply.com.

Figure 74: Paper overlay—the circuitry is covered up
Images from www.crowdsupply.com and http://scraptime.ca/.

http://www.chibitronics.com/
http://www.chibitronics.com/
http://www.crowdsupply.com/
http://www.crowdsupply.com/
http://scraptime.ca/

 T58

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Below are a few more greeting card ideas using a circuit with one light. Notice that the artwork can be
minimal and unsophisticated, and it can still be effective and fun for the recipient to receive this unique
greeting card. We can also poke a small hole in the paper overlay to let the head of the LED stick through.

Figure 76: Greeting card idea
Image from www.chibitronics.com.

Using the tape as a visible part of the design presents many additional challenges:

• The copper tape does not curve or turn corners very well. The tape may get crinkled
• The negative and positive traces must not touch one another
• Scotch tape will most likely have to be used to ensure the copper tape connects conductive

side to conductive side (the side of the copper tape that is not adhesive) at junctions. The
plastic tape may have an unsightly effect on the project

• The project will use up much more copper tape than the others.

But it is possible to do it, and it may be worth the effort if it’s planned well. Here is an example:

Figure 77: ECS greeting cards
Images from ECS Pilot Study, Year 1

Figure 78: Visible tape
Image from www.instructables.com: megapix.

http://www.chibitronics.com/
http://www.instructables.com/

 T59

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

We can also consider incorporating the switch into the design.
This student from the first ECS pilot study made a birthday card
(left). The note at the bottom of the card instructs the card
recipient to touch the lighter to “light the candle.”

Activity 2: Electronic wristband
The aesthetic drawing below is a great template for the electronic wristband (Figure 80). The lights are
in a parallel circuit, and the metal snaps serve as a switch because the negative line does not connect
to the power source unless the bottom two snaps are connected. Use this as a guide for designing the
wristband. We can, however, make the lines straight across (not wavy like shown here), or move the
LEDs so they’re not all evenly spaced and aligned across the middle like in the drawing. We can also
choose whether the battery holder should be on the front or the back side of the fabric.21

In the three examples on the following page, the circuitry is mostly covered up by pieces of fabric, with
the LEDs sticking up through little cut-outs in the fabric (Figure 81 and 82). The batteries were also
sewn in on the back sides of the fabric or on the bottom of the wristband where they are not visible
in these photos.

21 Strommer, A. & Fields, D. (n.d.). Light-up bracelet student guide. Utah State University. Retrieved from
https://itls.usu.edu/files/projects/ETextiles_Bracelet_Guide.pdf.

Figure 80: Wristband sample drawing
Image from www.itls.usu.edu: Light-Up Bracelet Student Guide

Figure 79: Switch as part of design
Image from ECS Pilot Study, Year 1

https://itls.usu.edu/files/projects/ETextiles_Bracelet_Guide.pdf
http://www.itls.usu.edu/

 T60

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

We don’t have to be limited to wristbands. This ECS student made a collar for her dog:

Figure 82: E-textile dog collar

Image from ECS Pilot Study, Year 1

As with the Electronic Greeting Card activity, making the circuitry visible on the front is more
challenging. But it can be done!! The next page shows four ideas where the stitching is part of the
aesthetic design:

Figure 81: Designs with fabric overlay
Images from http://www.instructables.com: bitwiseOwl, & www.darcyneal.com.

http://www.instructables.com/
http://www.darcyneal.com/

 T61

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Image from www.kpeppler.com.

 Image from www.highlowtech.org.

Image from www.primaryinspired.net

Image from www.itls.usu.edu: Light-Up Bracelet Student Guide

Figure 83: Four designs with visible stitching

Once we choose the fabric and create our circuit diagram, be sure to include space for the battery and
the switches before cutting the fabric. Taping the components down with Scotch tape can help us
figure out how much material and space we will need. We can also use a pencil or a fabric pen to draw
where the stitches will go, directly on the fabric.

The snaps are really tricky. They are distributed already connected in pairs, and a “male” side and a
“female” side are necessary to make up a pair. Disconnect them and tape them onto the fabric in their
respective places until we need to sew them, to avoid them getting lost or mixed up. Try the wristband
on a few times while crafting to make sure the snaps are oriented correctly.

Activity 3: Collaborative Mural project
This project is collaborative in several ways. First, we emphasize designing in pairs, pair crafting, and
pair programming – in other words, two people working on one project concurrently. Then the
projects are brought together into a larger project that has a cohesive message.

When working in groups, it is tempting for the sewing experts to do all the sewing and all the
programming experts to do all the coding. The purpose of the pair-work is for division of labor to be
as equal as possible, with each participant doing half of the crafting and half of the programming, so
that no one person is doing everything. While it is natural for each person to have a preference for

http://www.kpeppler.com/
http://www.highlowtech.org/
http://www.primaryinspired.net/
http://www.itls.usu.edu/

 T62

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

one aspect of the work than the others, we want to encourage partners to share their expertise and
tips with their partners, rather than take it and just do it all themselves. That way, everyone learns!

Think about a sign for the classroom, the computer science program, or for the school. Does the school
band need a banner for the local parade? Could the classroom or the front office use a new welcome
sign? Does a demonstration booth or fundraising table need a decorative? Honing in on the “what” will
determine the materials we need and how to divvy up the tasks. Think of a simple phrase to spell out,
and assign students to make their letter come alive in a special way. Be sure to facilitate discussions
with the design partner, the group at large, and other school community stakeholders. Remember
that each individual piece will have its own battery and two switches for interactivity with the audience.

Here are some possible project ideas. This mural (Figure 84) was created by three adults in just a few
hours and utilizes only our basic e-textile materials (felt, Circuit Playground, LEDs, switches, etc.).

Figure 84: Computer Science rocks!

Image by Deborah Fields.

This is a video of that project in action: http://bit.ly/CSrocks-vid.

The following series was created by students at a magnet school. The project was to create an
interactive mural that spells out the name of the school (not provided in order here, to protect the
anonymity of the school). Before it was even created, school administrators had determined that the
project would be permanently installed in a high traffic area where students, staff, and visitors to the
school would interact with it. The project involved multiple layers of collaboration. First, each “letter”
panel was designed by a student in the fine arts program and their art was printed onto canvas. That
student had multiple design meetings with the two computer science students assigned to create the
light patterns. Together, they determined where the Circuit Playground, LEDs, switches, etc. would go
and how the piece would interact with the people who would walk by. Before the project was installed,
administrators of the school were invited to view and play with the completed art.

http://bit.ly/CSrocks-vid

 T63

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Figure 85: Art and Computer Science student collaboration

Images from University of Pennsylvania Pilot Study.

 T64

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Figure 86: Mural Example from an ECS class with an animation theme.

Images from UCLA Pilot Study.

 T65

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Activity 4: Human Sensor Project
The Human Sensor Project also requires interaction with an operator (user) in order to function.
Instead of a simple on-off switch, the HSP uses a sensor to read a range of inputs from the user. We
can program the Circuit Playground to function differently depending on the sensor reading. In this
case, touch sensors will gauge how conductive the operator is. Each of these projects are designed to
produce different lighting effects depending on how much the user is touching the sensor patch; the
effects change based on how much surface area contact there is (e.g., no contact vs one finger touch,
pinch with two fingers and thumb vs. whole hand squeeze).

Brainstorm about making something that’ll be fun to touch and interact with. What should people
touch or squeeze? Should there be only one human interacting with the computer, or multiple people?
Should multiple humans interact with one another and the project?

Here are some ideas. Below is a pillow with a dinosaur and two sensor patches (Figure 87). As the
operator applies more pressure to the touch sensors, the dinosaur lights up in different ways.

Figure 87: Dinosaur pillow with four behaviors

Images from http://blog.usu.edu/: Craft Technologies 2013.

This is Clyde (below), a stuffed human sensor monster created by Janell Amely. The monster’s
appendages are lined with aluminum foil. See Clyde in action on YouTube: http://bit.ly/Clyde-in-action.

Figure 88: Clyde, a stuffed monster

Image by Janell Amely.

http://blog.usu.edu/
http://bit.ly/Clyde-in-action

 T66

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

NOTE: As we may have experienced in the wristband project (and if we’ve made clothing before), it’s
really tricky to think three dimensionally, to space things correctly, to remember where the fronts and
backs are, to figure out which parts to complete first, etc. With a stuffed project, we have to be
additionally careful that the Circuit Playground switch and battery are accessible from the outside,
and that connections are checked and double-checked before stuffing the project and sewing all the
edges up. Proceed with stuffed projects only after creating very accurate and detailed circuit drawings
of both the front and back (and other perspectives, if applicable).

We recommend for beginning crafters to modify existing wearable articles of clothing, or to create
something that’s flat (2-dimensional), like these:

Figure 89: Fuzzy hat with ear muff sensors

Image from http://blog.usu.edu/: Craft Technologies.

Figure 90: Children's blanket

Image from http://blog.usu.edu/: Craft Technologies 2013.

Figure 91: "L"ED Jacket

Images from http://blog.usu.edu/: Craft Technologies.

Mark Stevenson created a “Get Along Mat” for his children. He told his kids that the mat requires two
people to hold hands while touching the foil sensors. The firmer the contact is with the sensors, the
more LEDs light up. He remarked that he has heard his oldest son threatening his younger brother to
play nice or he would ask Dad to pull out the "Get Along Mat." See it in action on YouTube here:
http://bit.ly/get-along-mat.

http://blog.usu.edu/
http://blog.usu.edu/
http://blog.usu.edu/
http://bit.ly/get-along-mat
http://blog.usu.edu/crafttechnologies2013/category/human-sensor-project-part-ii/page/2/
http://blog.usu.edu/crafttechnologies2013/category/human-sensor-project-part-ii/page/2/

 T67

Exploring Computer Science — E-Textiles Technical Guide: IDEAS & INSPIRATION

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

Figure 92: “Get Along Mat”
Image from Mark Stevenson

Below is a dog halter that Erin Anderson modified with LEDs around the collar. The sensor patch is on the
wristloop held by the human, not on the dog. When the dog pulls, it forces the operator to grip the band
tighter, the LEDs create different lighting patterns. The maker said the dog broke it the first time he wore
it — he doesn’t like halters!). See an explanation for how it works here: http://bit.ly/dog-halter.

Figure 93: Light-up dog halter

Image by Erin Anderson.

NOTE: As a reminder, always consider the audience or user, as well as the intended longevity of the
artifact, when designing the project. The materials we use in e-textiles—felt, foil sensors, conductive
thread, etc.—are all very fragile. Even Clyde, the stuffed monster above, had to be patched up with
conductive fabric after the foil wore down.

http://bit.ly/dog-halter

 T68

Exploring Computer Science — E-Textiles Technical Guide: GLOSSARY

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

GLOSSARY

This section contains definitions of key technical words that are used in this resource guide or in
the ECS curriculum. These short descriptions are not meant to be a rubric for assessing student
knowledge.

abstraction: the computer’s process of creating pieces of code, so that a programmer does not
need to understand how the code works to use it in a program.

analog: in electronics, a signal that conveys information through a continuously changing value.
Analog signals are different from digital signals, which convey information through discrete
changes in values. An analog signal looks like a wave moving up and down. See also digital.

array: a list or table in code. Arrays provide a way to store an ordered collection of data in our
program. The entries in an array are accessed using numbers in square brackets. The access
numbers begin with zero.

C (programming language): a general-purpose programming language developed in the late 1960s
by Dennis Ritchie, a researcher at AT&T Bell Labs. All Arduino programs are written in C.
However, the Arduino environment has many features that aren’t part of standard C, including
built-in procedures like digitalWrite and delay, so the Arduino language can be said to be a
dialect (or version) of C. C is one of the most widely used programming languages in the world.

call (a procedure): calling a procedure means that we use the procedure in the main part of our
program. For example, we call Arduino’s built-in delay procedure when we include the
statement delay(1000); in the loop part of our program.

capacitance: a material’s ability to store electric charge.

capacitive sensor: a sensor based on changing capacitance, that changes its capacitance in
response to a stimulus, often touch.

circuit: a network of electrical devices. It is generally a closed loop that includes a power supply and
other electrical elements like LEDs and switches. The loop structure enables the flow of electric
current from (+) to (-).

code or source code: a collection of instructions that will be carried out by a computer (or Circuit
Playground) and that are written in a programming language. Any piece of an Arduino program
can be called code. See also program.

This material was adapted from Sew Electric and customized for use with the ECS curriculum. See:

Buechley, L., Qiu, K., Goldfein, J., & de Boer, S. (2013). Sew electric: A collection of DIY projects that combine fabric,
electronics, and sewing [online version]. Retrieved from http://sewelectric.org/references/glossary/.

http://sewelectric.org/references/glossary/

 T69

Exploring Computer Science — E-Textiles Technical Guide: GLOSSARY

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

comment: a piece of text in a program that is ignored by the compiler and the computer (or Circuit
Playground) that executes the code. In the C programming language there are two kinds of
comments: comments that extend for several lines (like paragraphs) and comments that are
written on a single line. To create a comment that spans multiple lines, begin the comment with
/* and end it with */. To create a comment that is only on one line, begin it with //. Comments
are shown in a greyish brown in the Arduino environment.

comment out (code): to turn a piece of code into a comment. Commenting out a piece of code
allows us to temporarily prevent that code from executing—since comments are ignored by the
compiler—while keeping the text of the code in our program. To comment out a single line of
code, add two slash characters // to the beginning of the line. To comment out a larger piece of
code, add /* characters to the beginning of the section we want to comment and */ to the end of
the section. The commented-out section turns grey in the Arduino window. The statement
delay(1000); is commented out when two slash characters are placed in front of it like so:
//delay(1000); See also comment.

communication speed: the speed at which one computational or electronic device
communicates with another. Communication speed is measured in bits per second. 9600 bits
per second (“baud”) is the standard communication speed for most Arduino applications. Before
sending data from a Circuit Playground to a computer in an Arduino program, we must specify
the communication speed using the Serial.begin procedure. For example, the statement
Serial.begin(9600); sets the Circuit Playground’s communication speed to 9600 bits per second.
See also serial port.

compile: to translate a program, written in a programming language like C, into a machine-readable
code like hex code. In the Arduino, clicking on the check mark icon in the toolbar compiles C
code that we wrote into hex code that a Circuit Playground can understand.

compile correction: an error in a program that is detected when software attempts to compile the
program. Compile errors are often syntax errors like misspellings or missing semi-colons. For
example, if the word “delay” is misspelled in the statement dellay(1000);, code containing this
statement will generate a compile error.

condition: a statement that is always either true or false. Conditions are often comparisons using
less than (<), greater than (>), and equal to (==) operators. For example, the condition x < 10 is
true when x is less than 10 and false when x is 10 or greater. Conditions are an important part of
conditional statements, where they appear in parentheses. In the line if (i < 10), (i < 10) is the
condition. See also conditional statement.

conditional statement: a block of code that does one thing if a condition is true and another thing
if the condition is false. if else statements and while loops are examples of conditional
statements. See also condition.

conductive: a conductive material is one that an electrical current flows through easily. Metals like
copper, silver, and aluminum are highly conductive. Conductive materials include the tabs on
the Circuit Playground components and the metallic thread used to sew these components
together. The opposite of conductive is insulating. Insulating materials—like plastic, glass, and
fabric—resist the flow of electricity. Electrical current does not flow through insulating materials.

 T70

Exploring Computer Science — E-Textiles Technical Guide: GLOSSARY

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

constant: a named variable in a program whose value never changes. Constants are declared like
variables with a type and a name. However, constants require an additional code word, const, at
the beginning of the statement.

digital: information represented using discrete values. In computing, information represented using
1s and 0s. In electronics, a signal that conveys information through discrete values (HIGH/LOW)
instead of continuously varying values. A switch is an example of a digital sensor since it conveys
information in a discrete manner; it is either open or closed. Digital signals are different from
analog signals, which convey information through continuous changes in values. A digital signal
looks square since it is only on or off for a period of time. See also analog.

electric current: the flow of electricity through a circuit. Current travels from the (+) side of a
battery (power), through the components connected in the circuit, and back to the (-) side of the
battery (ground). Electric current only flows through a circuit if the path is complete, that is, if
there are no breaks in the circuit. Electric current is measured in amps.

electronic textiles or e-textiles: fabrics that include soft electrical circuitry and embedded
electronics like sensors, lights, motors, and small computers. Designers of e-textiles strive to
keep things soft by using new materials like conductive thread, conductive fabric, and flexible
circuit boards.

energy: electrical energy is the ability of a power supply to run a circuit over time, to light up an LED,
or make sounds with a speaker. The amount of energy stored in a battery is equal to its amp-
hour rating multiplied by its voltage rating. Energy is measured in watt-hours (Wh). For example,
a 3-volt battery with an amp-hour rating of .25 amp-hours stores .75 watt-hours of energy.

execute (a program): (also run) the act of carrying out the instructions specified by a program. A
computer—like the Circuit Playground Arduino—executes programs line-by-line in the exact
order in which they are written.

frequency: the speed or pitch of a sound wave. Sound is created by vibrations of molecules in the
air. When the molecules vibrate very quickly—at a high frequency—we hear a high note; when
they vibrate more slowly—at a low frequency—we hear a low note. Frequency is measure in
pulses per second or Hertz (Hz).

ground (-): the negative terminal of a battery or other power supply in a circuit; 0 volts. Also, any
part of a circuit that is at 0 volts. Ground is the reference point in a circuit from which all other
voltages are measured. The color black is used to denote ground in circuit diagrams and
drawings. In Arduino code, ground is referred to as LOW. See also low and power.

high or HIGH: in Arduino code, the term used to refer to power (+) in electrical circuits. Power, (+),
and HIGH refer to the positive terminal of a battery or other power supply in a circuit. See
also power and low.

initialize (a variable): a variable is initialized when a value is assigned to it for the first time. For
example, the statement int led = 13; declares a variable called led and initializes it to 13. The
statement assigns the value of 13 to the variable led.

 T71

Exploring Computer Science — E-Textiles Technical Guide: GLOSSARY

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

input (device): an electrical component that gathers information from the world. This information
could include how hard a sensor is being pressed, the current temperature, or the ambient
sound level is. Input devices include switches, touch sensors, thermometers, cameras, and
microphones. All sensors are inputs. In Arduino, information is collected from inputs
with digitalRead and analogRead statements. See also read and output (device).

input (to a procedure) or input variable: information required by a procedure. Usually a number
supplied in parentheses after the procedure name in a procedure call. For example, in the
statement delay(1000);, the number 1000 is the input. Input variables help programmers write
procedures that are applicable to a wide range of situations. Inputs enable us to carry out the
same basic set of instructions or statements, but with different values. The built-in
procedure delay has an input that lets us delay for different amounts of time in the
programs. When we call delay with an input of 1000, our program pauses for one second.
A delay with an input of 100 pauses for 1/10 of a second.

int or int: a data type used in Arduino programs used to declare integer (i.e. whole number)
variables. The most common variables and numbers are of type int. For example, the
statement int led = 13; declares a variable called led of type int. See also type.

LED: short for light-emitting diode. LEDs contain an electroluminescent material—a material that
glows when electrical current flows through it. LEDs are polarized. That is, they have a (+) and a
(-) side and will only light up when current flows from their (+) to (-) side. If we attach an LED
backwards in the circuit, it will not work. LEDs are more efficient than most other light sources.
That is, they produce more light with less energy than most other types of lights. See also
polarity.

logical correction: an error that occurs when our code compiles and uploads but doesn’t behave
the way we want it to. These errors are the trickiest to find and fix because the computer doesn’t
give us any feedback about what might be causing problems, like it does with compile and
upload errors.

low or LOW: in Arduino code, the term used to refer to ground (-) in electrical circuits. Ground, (-),
and LOW refer to the negative terminal of a battery or other power supply in a circuit. LOW is
always 0 volts. See also ground (-) and high.

memory: where an Arduino program is stored once it’s uploaded to a Circuit Playground. Once a
program is stored in the Circuit Playground’s memory, the Circuit Playground can run the
program independently of the computer.

microcontroller: a small computer chip that stores and execute programs and controls electronics.
Microcontrollers, like most computers, have a memory that is used to store programs and
program data, and a processor that is used to interpret and execute programs. Microcontrollers
also have pins that can be used to control input and output devices. When input and output
devices like sensors and LEDs are attached to the pins, the microcontroller can read
electrical signals from the inputs and send electrical signals out to the outputs.

 T72

Exploring Computer Science — E-Textiles Technical Guide: GLOSSARY

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

milliseconds: 1/1000 of a second. 1000 milliseconds (1000 ms) is one second. The input to the
Arduino procedure delay is in milliseconds. delay(1000); pauses program execution for one
second, delay(100); pauses program execution for 1/10 of a second, and so on.

open source: a term used to describe a program whose source code is publicly available for us to
use, examine, and modify. The sharing of open source software, also known as free software
can enable people to collaborate on projects by helping them extend and expand on each
other’s work. We are making use of open source software and open source hardware
throughout this curriculum. Arduino is open source and the designs of the Circuit Playground
boards are also open source.

output (device): an electrical component that takes action—does something—in the world. Actions
could include lighting up, moving, making sound, or changing shape. Output devices include
lights, motors, speakers, and display screens. In Arduino, outputs are controlled
by digitalWrite statements. See also write and input (device).

parallel circuit: components in a parallel circuit have all of their (+) sides connected together and all
of their (-) sides connected together, so all of the components receive the same voltage.

pin: part of a microcontroller that can attach to and control an input or output device. Each
microcontroller pin can control either an input device, like a switch, or an output device, like an
LED. The pins on a microcontroller look like tiny legs coming out of the controller’s black square
body. On the Circuit Playground boards, microcontroller pins are connected to sewable tabs and
snaps. When an input or output device is attached to a tab or snap, the microcontroller can
control that component. Can also be called a tab or microcontroller.

polarity: electrical orientation or direction. Electricity flows in one direction in a circuit, from (+) to (-).
Due to this property, electrical circuits are said to be polarized. Electrical components with
polarity will only work properly when electrical current flows through them in a particular
direction, from their (+) to (-) side. LEDs are examples of components with polarity.

power (+): the positive terminal of a battery or other power supply in a circuit. Generally, the highest
possible voltage in a circuit. The color red denotes power in circuit diagrams and drawings. Note:
Different circuits may have different power (+) voltages. For example, in a circuit that uses a 3-
volt battery, power is +3 volts. In a circuit that uses a 3.7-volt battery, power is +3.7 volts. In
Arduino code, power is referred to as HIGH. See also high and ground.

procedure: a block of code that is given a unique name. A procedure may have one or more inputs
and it may return a value. When a procedure is called, the program jumps to the place in the
program where the procedure is defined, executes the block of code that makes up the body of
the procedure, and then jumps back to the point right after the procedure was called in the
program. The Arduino language has a library of built-in procedures like delay, digitalWrite, and
analogRead. We can also define our own procedures. See also input (to a procedure)
and return.

 T73

Exploring Computer Science — E-Textiles Technical Guide: GLOSSARY

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

program: a set of instructions to be carried out by a computer (or Circuit Playground). A program is
written in a programming language. Programs can also be called pieces of code. A program does
its work when a computer runs or executes its instructions by following them in order. See also
code.

programming language: a language that enables people to write instructions for computers.
Programming languages generally have limited vocabularies and very strict formatting rules.
This enables them to be read and understood by machines. There are many different
programming languages like Python, Java, C++, and Scheme. Arduino programs are written in
the C programming language.

read (from a pin): the act of gathering information from an input device. Information is collected via
an input device attached to a pin on a Circuit Playground (or other microcontroller). In Arduino,
information is read from a pin with the statements digitalRead and analogRead.
digitalRead(pin); tells us whether the pin is HIGH or LOW. analogRead(pin); measures the
voltage level of the pin and gives us a number between 0 and 1023 that corresponds to the
voltage. See also write and input (device).

resistive sensor: a sensor based on changing resistance, that changes its electrical resistance in
response to a stimulus.

return: a procedure is said to return when it finishes executing. Some procedures return a value.
That is, the procedure finishes executing and provides the results of its execution back to the
program that called it. For example, the procedure analogRead(pin); returns the value it read
from the input pin. See also procedure.

run: see execute.

running stitch: the most basic stitch in hand sewing. Also called a straight stitch. This stitch is
created by passing a needle and thread up and down through a piece of fabric along a line. A
good running stitch consists of neat, even stitches of about 1/4” (6mm) in length.

sensor: an electrical component that gathers information from the world, for example: how hard a
touch sensor is being pressed, what the current temperature is, or what the ambient sound level
is. Sensors include touch sensors, thermometers, cameras, and microphones. All sensors are
inputs. In Arduino, information is collected from sensors with the analogRead statement. See
also read and input (device).

serial port: the communication channel through which a computer communicates with a Circuit
Playground and vice versa. The serial port connection—the USB attachment between the Circuit
Playground and the computer—allows Arduino to upload programs to the Circuit Playground
and allows the Circuit Playground to send information back to the computer with Serial.println
and Serial.print statements. See also communication speed.

short circuit or short: the direct electrical connection of a power supply’s (+) and (-) sides. When a
short circuit occurs, the circuit’s power supply releases a tremendous burst of energy. A short
circuit can ruin a battery and can electrocute or burn us if the power supply is powerful enough.
The batteries we’re using for the projects probably won’t shock or burn us even if we create a

 T74

Exploring Computer Science — E-Textiles Technical Guide: GLOSSARY

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

short circuit. But, if we do connect the project’s (+) and (-) sides or connect traces that should not
be touching, the project may not work and we may quickly ruin the battery.

statements: computer sentences; lines of code written in a programming language that tell a
computer to do something. Simple statements in Arduino end with a semicolon the way that
English sentences end with a period. digitalWrite(led, HIGH); is a simple statement. More
complex statements can span several lines. Examples of complex statements include if
statements and while loops.

switch: a circuit component that is always in one of two states: open (disconnected) or closed
(connected). In a simple circuit, the flow of electricity through a circuit is stopped when
the switch is open and restored when the switch is closed.

syntax: the rules that define the structure of a programming language. These are the spelling,
punctuation, capitalization, and formatting rules we must follow when we’re writing a program.
Different programming languages have different syntaxes.

syntax correction: an error in a program that happens when we do not follow the programming
language’s syntax. See also syntax and compile error.

threshold: a cutoff value used in a program such that one behavior happens if a variable has a
value below the threshold and a different behavior happens in the variable has a value above
the threshold. Thresholds are often used in conditional statements of the form if (variable <
threshold) or if (variable > threshold).

trace: a conductive connection between two components in a circuit.

type: computer programs handle different kinds of information including whole numbers, decimal
numbers, text, and images. Before a program can manipulate a piece of data, it needs to know
what type of data it is dealing with—whether it’s an image, a piece of text, etc. In most
programming languages, each variable used in a program must have a specified type when it is
first declared. Almost all of the variables we use are of type integer or int. They are whole
numbers. In Arduino, integer variables are declared with a statement of the form int
variableName; or intvariableName=#;. In these statements, int specifies the variables’ type. See
also variable declaration, int and integer.

upload: the act of sending code that has been compiled and converted into hex code from a
computer to a Circuit Playground.

variable: a named location in a program’s memory that can store values. Variables give names
to information and elements used in our program. They make programs easier to write,
understand, and modify. Variables are generally listed at the beginning of an Arduino program.
This list is analogous to the list of ingredients at the beginning of a cooking recipe. Every Arduino
variable has a type that is specified when it is declared. See also variable declaration, variable
initialization and type.

 T75

Exploring Computer Science — E-Textiles Technical Guide: GLOSSARY

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

variable declaration: a statement introducing (or “declaring”) a variable and its type. For instance,
the statement int myVariable; declares a variable named myVariable of type int, short for
integer. All variables in a program must be declared before they can be used. Variables are often
declared and initialized in a single statement. The statement int myVariable=13;, for example,
both declares a variable called myVariable and initializes it to the value 13. See also variable,
variable initialization and type.

variable initialization: a statement that gives a variable a value for the first time. For example, the
statement int myVariable=13; declares a variable called myVariable and initializes it to the value
13. Variables are often declared and initialized in the same statement, but not always. The
statement int myVariable=13; can be broken down into two separate statements. The
statement int myVariable; declares the variable myVariable. The statement myVariable=13;
initializes myVariable, giving it its initial value. See also variable and variable declaration.

write (a pin): the act of controlling an output device attached to a pin on a Circuit Playground (or
other microcontroller) by sending it electrical signals. In Arduino, electrical signals are written to
a pin with the statement digitalWrite. digitalWrite(pin, value); sets the pin to be either HIGH
(maximum circuit voltage, power (+)) or LOW (minimum circuit voltage, 0 volts, ground(-)). See
also read and output (device).

 T76

Exploring Computer Science — E-Textiles Technical Guide: BIBLIOGRAPHY

©University of Oregon, 2018. Please do not copy or distribute this curriculum without written permission from ECS.

BIBLIOGRAPHY
Buechley, L., Qiu, K., Goldfein, J., & de Boer, S. (2013). Sew Electric: A Collection of DIY Projects That
Combine Fabric, Electronics, and Sewing [online version]. Retrieved from http://sewelectric.org/.

Kitronik. (n.d.). LED Flasher Module Kit. Nottingham, UK: Kitronik Ltd. Retrieved from
www.kitronik.co.uk/pdf/2719R_electro-fashion_flasher_module_kit_build_instructions.pdf.

Lovell, E. (n.d.) Getting hands on with soft circuits: A workshop facilitator’s guide. SparkFun.
Retrieved from https://cdn.sparkfun.com/assets/resources/2/8/guide.pdf.

Peppler, K., Gresalfi, M., Tekinbas, K. S., Santo, R., & Buechley, L. (2014). Soft circuits: Crafting e-
fashion with DIY electronics. (pp. 61-62). Cambridge, MA: MIT Press.

Qi, J. (2014). Simple circuit tutorial. Chibitronics, PTE LTD. Retrieved from www.Chibitronics.com.

Strommer, A. & Fields, D. (n.d.). Light-up bracelet student guide. Utah State University. Retrieved
from https://itls.usu.edu/files/projects/ETextiles_Bracelet_Guide.pdf.

Strommer, A. & Fields, D. (n.d.). LilyTiny Project student guide. Utah State University. Retrieved
from https://itls.usu.edu/files/projects/ETextiles_LilyTiny_Guide.pdf.

http://sewelectric.org/
https://www.kitronik.co.uk/pdf/2719R_electro-fashion_flasher_module_kit_build_instructions.pdf
https://cdn.sparkfun.com/assets/resources/2/8/guide.pdf
http://www.chibitronics.com/
https://itls.usu.edu/files/projects/ETextiles_Bracelet_Guide.pdf
https://itls.usu.edu/files/projects/ETextiles_LilyTiny_Guide.pdf

	Table of Contents
	OVERVIEW
	Examples of Electronic Textiles
	Ethical and Safety Issues

	BASICS: CIRCUITS, CRAFTING, CODING
	Circuitry
	1. Electricity
	2. Current
	3. Conductors
	4. Loads
	Example of a simple circuit

	5. Resistors
	6. Switches (open and closed circuits)
	7. Sensors
	8. Other Output (buzzers, .mp3 Speakers, etc.)
	9. Drawing Circuit Diagrams
	10. Power Source
	11. Connectors (interchangeable with Conductors, Lines, or Traces)
	12. Switches
	13. Sensors

	Sewing
	1. Conductive thread
	2. Make a starting knot (single thread)
	3. Conductive Sewing
	4. Running Stitches
	5. Making end knots
	6. Taking out stitches
	7. Storing works in progress
	8. Finishing touches

	Coding
	1. Programming software: Modkit
	2. Programming software: Arduino
	3. Programming software: Codebender
	4. Setting up the Circuit Playground for programming

	TROUBLESHOOTING
	1. Connecting the Circuit Playground to the Computer
	2. The four stages of programming
	3. Arduino program structure
	4. Programming basic commands

	Electrical Problems
	Code Problems – Compile Errors
	Missing semicolons ;
	Missing curly braces { }
	Missing parentheses ()
	Misspellings and mis-capitalizations
	Missing variable declarations
	Extra text in program

	Code Problems – Logical Errors
	Missing variable initializations
	Variables that do not match circuit
	Conditions that are always true or false
	Incorrect variable initializations
	Problems with delay

	MATERIALS
	Electronic textile materials and tools
	Crafting materials and tools

	IDEAS & INSPIRATION
	Do-It-Yourself Sensors
	Making touch sensor patches
	Attaching the touch sensor to the project

	Electronic Textiles Design Ideas
	Activity 1: Electronic greeting card
	Activity 2: Electronic wristband
	Activity 3: Collaborative Mural project
	Activity 4: Human Sensor Project

	GLOSSARY
	BIBLIOGRAPHY

