

M.​A.​D.​E.
INTERMEDIATE E-TEXTILES GUIDES

FOR ​MUSIC​ | ​ART​ | ​DESIGN​ | ​EXPERIENCES

FADING LEDS

Copyright © 2019 University of Pennsylvania

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/4.0/​ or send a letter to Creative Commons, PO Box
1866, Mountain View, CA 94042, USA.

©2019 Google LLC All rights reserved. ​This curriculum module and research was supported by
funding from Google's CS-ER program. ​Google and the Google logo are registered trademarks of
Google LLC. The University of Pennsylvania is a recipient of Google’s CS-ER program. The Google
Grants program supports registered nonprofit organizations that share Google's philosophy of
community service to help the world in areas such as science and technology, education, global public
health, the environment, youth advocacy, and the arts. Google Grants is an in-kind advertising
program that awards free online advertising to nonprofits via Google AdWords.

Any opinions, findings, and conclusions or recommendations expressed in this guide are those of the
authors and do not necessarily reflect the views of Google, the University of Pennsylvania, Utah State
University, University of Oregon, or Exploring Computer Science.

Please cite this work as Fields, D. A., Amely, J., Jayathirtha, G., Lindberg, L., Lui, D. & Kafai, Y. B.
(2019). ​M.A.D.E. Intermediate E-Textiles Guide: Fading LEDs.​ Available online at
http://exploringcs.org/e-textiles/modules​.

http://creativecommons.org/licenses/by-nc/4.0/
http://exploringcs.org/e-textiles/modules

M​A​D​E​ - FADING LEDS
What you need to know first:

This module assumes that users have basic experience with making lighting patterns in Arduino (i.e., with

digitalWrite() and delay() commands). For more introductory material, see the ​Exploring Computer

Science e-textiles curriculum unit​, Buechley & Lui ​Sew Electric​, or other ​introductory Arduino guides​.

Other ECS E-Textiles modules as well as supporting code samples that may be referenced in this text

can be found through ​http://exploringcs.org/e-textiles/modules​.

Table of Contents

Fading LEDs
1. What do you mean by “fading” an LED?
2. Task #1 - Make an LED Fade On | Simple
3. How to Use a for() Loop

3.1 EXAMPLE Blinking with a for() Loop
3.2 CHALLENGES | All the Blinks

4. How to Fade an LED with a for() Loop
4.1 EXAMPLE | Fading ON for() Loop
4.2 Debug Fading
4.3 CHALLENGES | Fading

2

http://www.exploringcs.org/e-textiles
http://www.exploringcs.org/e-textiles
http://sewelectric.org/
https://www.arduino.cc/en/Guide/HomePage
http://exploringcs.org/e-textiles/modules

M​A​D​E​ - FADING LEDS
1. What do you mean by “fading” an LED?
You have turned on an LED, and you also learned how to make it blink. Is there
anything else you can do with an LED? A new thing to try is to program an LED to work
like a dimmer switch. That way you can set it at any point of brightness: off​—​low bright
—​medium bright​—​very bright​—​and any point between. You may have done this with
the ​analogWrite​()​ function already, and found that you can set pins ​3​ ​6​ ​9​ and​ ​10​ on
the Circuit Playground (CP) to any number from ​0​ to ​255​. With those pins, you can also
do slooowly turning on or slooowly turning off. Want an LED to look like a heartbeat? By
fading on and off, you can make that effect!

NOTE:​ Only certain pins on Arduino microcontrollers can “fade” lights: ​3, ​5​, 6, 9, 10,
and 11. Be sure that your LEDs are connected to these pins and not others, or they will
only appear to blink instead of fade. Some Arduino microcontrollers like the LilyPad or
Circuit Playground do not have all six fade-able pins available, so be sure to double
check!

2. Task #1 - Make an LED Fade On | Simple
1. Write out the code to make an LED blink. If you need a bit of a refresher, you can

find it by navigating to Blink_analogWrite (found at
http://www.exploringcs.org/e-textiles/modules/supporting-code​).

2. In the Setup Section, add ​int led = 13;​. This uses the red LED that is already
on the Circuit Playground. You might instead hook up an LED to pins ​3​ ​6​ ​9​ or
10​ and ​Ground​—​just remember to change your ​int led​ pin number to match!

3. This is a good time to ​Save​ your file as myBlinkCode. Then ​Save As…​ and name
your new file myFadingCode. This keeps the code you already typed in but starts
a new file with it so you don’t accidentally change your myBlinkCode file.

4. Play with making an LED fade completely manually, aka the “lots of lines of
code” method. It will look something like this…

…………………………………………………………………………………..

void​ ​loop​(){
 analogWrite​(led, 10);
 delay​(10);
 analogWrite​(led, 20);
 delay​(10);
 analogWrite​(led, 30);
 delay​(10);
 analogWrite​(led, 40);
 delay​(10);
 analogWrite​(led, 50);

3

http://www.exploringcs.org/e-textiles/modules/supporting-code

M​A​D​E​ - FADING LEDS

//… until you get bored, or hit 255, whichever comes first
}

…………………………………………………………………………………..
5. Load your code to see your initial LED fade on attempt.

3. How to Use a ​for​()​ Loop
The “Lots of code” method is incredibly tedious, even with copy and paste! If only there
existed a way that made it so we could stop typing so much. Ah ha! That is what a
for​()​ ​loop is for! A ​for​()​ ​loop repeats a block of code a specific number of times, such
as blinking an LED ​10​ times. Head on down to ​Section 4: How to Fade an LED with a
for() loop​ if you already know this well.

**A ​for​()​ loop ​must​ be placed inside a program section! Either the ​void​ ​setup​()​ or
void​ ​loop​()​ will work. If you want it to repeat at any time, use the ​void​ ​loop​()
section. If it is outside of that and it is not written as part of a new function (which you
haven’t learned yet!) it won’t work. If you write your own function, then the text
myfunction();​ has to be called (typed into) in either of those main program sections or
it will not run.**

3.1 EXAMPLE Blinking with a ​for​()​ Loop
This is a code breakdown of a ​for​()​ loop that blinks an LED ​10​ times​ and then stops.
Keep in mind that it won’t look like it stops, because it is also in the ​void​ ​loop​()​ and
will keep looping while the microcontroller is on. Compare this to the “Lots of code”
method​—​they do the same thing!

There is a lot of stuff happening here! Below it is broken down line by line:

Line 1, ​for​()​ loop:

4

M​A​D​E​ - FADING LEDS

Let’s start with the three sections in the parentheses.
1. Initialization​,​ ​int i = 0​. ​This part says, “Create a variable and

name it ​i​. Set ​i​ to ​0​, so that whenever you see ​i​, think​ ​0​.​ (This
number changes!)

2. Condition​ to be met,​ ​i < 10​: how many times you want your code
to repeat. As long as the equation “​i​ is equal to ​less​ ​than​ ​10​”​ is
TRUE​, continue to the code in the Action Block. Once “​i < 10​” turns
to​ ​FALSE​, stop right here!

3. Increment​, ​i=i+1​. If you haven’t stopped yet, add ​1​ to whatever
number ​i​ currently is.

Zoom back out of the parentheses. “​for​” the code to continue, the
equation in the parenthesis has to be ​TRUE​. If it is still true, continue to the
Action Block​, the code within the curly braces ​{}​.

Lines 2 through 6, the ​Action Block​:

The code here blinks an LED on and off in ​1000​ millisecond increments (1
second), followed by the closing curly brace ​}​ to end the ​Action Block​ of
the ​for​()​ loop.

Line 7:
}
This one is easy, BUT VERY IMPORTANT! The ​void ​loop​(​)​ has its own
set of curly braces, and if you forget that ending curly brace ​}​, your code
won’t work! The same happens if you have too many ending curly braces.

A note on​ incrementing​:
The overall goal of incrementing is to eventually exit out of a ​for​()​ loop. We control
when that exit happens with incrementing. You can see in the setup of the ​for​()​ loop
above that we use ​i=i+1​, but we can also use any other number, including negatives. If
your ​for​()​ loop​ never runs, check your ​i​! If ​i​ solves to false on the first run through,
your ​Condition​ isn’t met, and the ​for​()​ loop will not run. Remember that you need to
change the ​for​()​ loop conditions for the logic to still make sense!

5

M​A​D​E​ - FADING LEDS
Incrementing Examples:

int​ i = 0; i < 10; i=i+1 Same as the example above. ​i​ is ​0​; as
long as ​i​ is less than ​10​, add ​1.

int​ i = 10; i > 0; i=i-1 Reverse of the first example. ​i​ is ​10​; as
long as ​i​ is more than ​0​, subtract ​1​.

int​ i = 255; i >= 0; i=i-5 i​ is ​255​; as long as ​i​ is more than or
equal to ​0​,​ ​subtract ​5​ from it.

int​ i = 0; i < 10; i++ Same as the first example. This one uses
a code shortcut. You can use ​i++​ or​ i--
if you ​only​ need to increment by ​1​.

3.2 CHALLENGES | All the Blinks
With the in-depth breakdown of using a ​for​()​ loop for blinking, now is a good time to
put that knowledge into action. Try out the challenges below to cement your
understanding!

❏ VERY EASY​ Copy the “Blinking with ​for​()​ loop” example from above (10
one-second blinks, with one second between each blink).

❏ EASY​ Change the blinking pattern to make it slower or faster.
❏ MEDIUM​ Add one line of code after the ​for​()​ loop to create a pause before

the blinking pattern starts again.
❏ MEDIUM​ Change how often the blinking pattern repeats before pausing (for

instance, 3 blinks or 5 blinks before repeating).
❏ MEDIUM​ Change some numbers to make the LED blink in an irregular pattern,

for instance with the timing (rhythm) of a galloping horse or a heartbeat.
❏ HARD​ Make a blinking code for a letter in morse code. (See the ​Morse Code

Chart​ for each letter’s value in blinks and delays, and the ​Morse Code
Translator​ if you need it.)

❏ HARDER​ Add another ​for​()​ loop so that you have two letters (for example,
“HI”). Use a pause between ​for​()​ loops so that each letter is distinct. You
might need to change variables.

❏ HARDEST​ Using ​for​()​ loops, make a short word in Morse Code (for
instance, “HELLO,” “SOS,” “LOVE”). Call a function for each letter of your
name to write it out in Morse Code blinks.

4. How to Fade an LED with a ​for​()​ Loop

Now that you have used all the parts of the ​for​()​ loop, let’s make an LED fade on. We
have been using ​i​ ​to count each repetition of the ​Action Block​. The trick here is that
we can ​also ​use it to control the brightness of the LED.

6

https://upload.wikimedia.org/wikipedia/commons/1/1f/International_Morse_Code.PNG
https://upload.wikimedia.org/wikipedia/commons/1/1f/International_Morse_Code.PNG
https://morsecode.scphillips.com/translator.html
https://morsecode.scphillips.com/translator.html

M​A​D​E​ - FADING LEDS

When you use ​analogWrite​()​, you can control how bright an LED is within a range of
0​ to ​255​. For example:

● analogWrite​(led, 0);​ ​//turns the LED off
● analogWrite​(led, 255);​ ​//turns the LED to maximum brightness
● analogWrite​(led, 100);​ //turns the LED to a medium brightness

To make an LED fade on, we want to start the LED at ​0​ and slowly (incrementally)
increase it to ​255​. To make it fade off we do the opposite, starting at ​255​ and
decreasing (decrementing) it until it is ​0​. Example 4.1 is one way to do this.

4.1 EXAMPLE | Fading ON ​for​()​ ​Loop
…………………………………………………………………………………..
int​ ​led = 13;

void​ ​setup​(){

pinMode​(led, ​OUTPUT​);
}

void​ ​loop​(){
 ​for​ (​int​ i = 0; i < 255; i = i+15){
 analogWrite​(led, i); ​//set the starting brightness of the LED
 delay​(500); ​//wait 500 milliseconds to see the dimming effect
 }
}

…………………………………………………………………………………..

We are increasing this ​for​()​ loop by 15 for each repeat (​i = i+15​). It only stops when
i < 255​ returns as ​False​, which also happens to be when the ​brightness​ is at the top
of the range, at ​255​.

The most important line of code here is:

Specifically, putting ​i​ where we would normally put the analog brightness number. This
makes it so that the analog brightness keeps going up by ​15​ each time the Action Block
is repeated!

7

M​A​D​E​ - FADING LEDS
4.2 Debug Fading
Start with the debugFADE code. (This code and code below found at
http://www.exploringcs.org/e-textiles/modules/supporting-code​).

❏ Debug (fix) the fading section to work correctly (see the directions in the code!).
❏ Copy/Paste the FADE ON code, and adjust it to make it FADE OFF.

Check your work: debugFADE_ANSWER code.

4.3 CHALLENGES | Fading
❏ EASIEST​ Get the debugFADE code to work correctly.
❏ EASY​ Make the LED fade very fast or very slowly.
❏ MEDIUM ​Code two LEDs to fade on and off at the same time.
❏ HARD​ Code one LED to fade on/off followed by the second LED fading on/off.
❏ HARDER​ Code one LED to fade on, followed by the other LED fading on, then

the first fades off, followed by the second fading off.
❏ SUPER DUPER HARD​ Fade two LEDs in reverse of each other, ​at the same

time​ (the first fades off as the second fades on, then in reverse). ​Hint:​ you want
the opposite of what ​i​ is currently at for the second LED. This involves a little
on-the-fly variable math. Check your work with this code: FADE_SuperHard.

8

http://www.exploringcs.org/e-textiles/modules/supporting-code

